48MHZ XTAL SELECTION

Product Family: EM9304

Part Number: EM9304, 48Mhz crystal, HFXTAL, 50ppm

This document provides a description on the important parameters to be considered when choosing the HFXTAL for EM9304 BLE controller operation.

1. INTRODUCTION

The EMC9304 is a tiny, low-power, integrated circuit (IC) optimized for Bluetooth 5.0 low energy enabled product. It integrates an xtal oscillator designed for a variety of low-cost 48MHz quartz crystals which provide the reference clock for the EM9304 RF blocks ensuring Bluetooth timing requirements. For minimal external parts count the EM9304 integrates programmable xtal oscillator tuning caps on chip. In some systems a 48MHz reference clock that meets the ppm specifications if available can be used in place of a quartz crystal. For this app note we will only cover using the quartz crystal option.

2. 48MHZ XTAL OSCILLATOR

The EM9304 integrates a low-power, low-noise, fast-starting crystal oscillator designed for using a wide variety of low-cost 48MHz quartz crystals. A simplified block diagram of the EM9304 xtal oscillator is shown below.

CXIN and CXOUT include the register trimmable on-chip tuning capacitors and the capacitances on XIN and XOUT pads. These caps have a 15% tolerance over PVT and can be set from 2.5pF-23pF. The onchip shunt capacitance between these pads can vary from 2.0pF-2.8pF. PCB capacitances can vary widely due to layout. Cpcbxin and Cpcbxout are estimated to be 1.1pF-1.3pF while the PCB shunt capacitor Cpcbp is estimated to be 0.1pF-0.3pF. Special care must be taken when laying out the PCB to reduce or at least control the parasitic capacitances on the connections from the IC to the xtal.

The xtal oscillator provides the reference clock for RF operation on the EM9304 and meets low phase noise, low current consumption, fast start-up time, and Bluetooth frequency precision requirements. The first three requirements are guaranteed by the oscillator block architecture; the frequency precision depends on the tolerances of the specific quartz crystal and on the variations of the internal and external capacitances on XIN and XOUT.

3. 48MHZ CRYSTAL ACCURACY REQUIREMENTS

Bluetooth operation requires a frequency precision of 50ppm which dictates the specifications for the quartz crystal as well as the tuning and parasitic capacitances on the crystal terminals. The total possible frequency deviation will be the summation of the following possible tolerances:

1) Quartz frequency tolerance
2) Quartz frequency deviation with temperature
3) Quartz aging tolerance
4) Frequency deviation due to the tuning and parasitic capacitances on XIN and XOUT

The first three influences are specified when ordering the quartz crystal and the fourth one is calculated. This calculation is shown in the next section.

4. FREQUENCY DEVIATION CALC

The figure below shows an electrical model of a quartz crystal. L_m, R_m and C_m are the “motional” inductivity, resistivity and capacitance. C_0 is the packaging parasitic shunt capacitance. These parameters are strongly dependent on the quartz size and on the manufacturing technology.
The “motional” or series resonance frequency is defined as:

$$f_m = \frac{1}{2\pi\sqrt{C_mL_m}} \quad [\text{Hz}]$$

The crystal quality factor is defined as:

$$Q = \frac{2\pi f_m L_m}{R_m} = \frac{1}{2\pi f_mC_mC_R}$$

Now given an equivalent parallel capacitive load C_p for the EM9304 oscillator we can approximate the oscillation frequency by:

$$f = f_m \left[1 + \frac{C_m}{2(C_0 + C_p)}\right] \quad [\text{Hz}]$$

We can calculate C_p given the capacitances shown on the schematic in section 2. This equation is

$$C_p = \frac{1}{C_{pcb} + C_{xin}} + \frac{1}{C_{pdb} + C_{xout}} + C_{ip}$$

C_xin, C_xout and C_{ip} are the on-chip capacitances while C_{pcb}, C_{xin} and C_{pdb} are the PCB parasitic capacitances.

C_m and C_0 will be mainly dependent on the crystal size. The smaller the size the smaller both these capacitances will be.

The nominal load capacitance C_L has to be specified and the manufacturer of the crystal will cut the quartz to obtain the specified nominal frequency f_0 when the equivalent parallel capacitance is equal to C_L.

$$f_0 = f_m \left[1 + \frac{C_m}{2(C_0 + C_p)}\right] \quad [\text{Hz}]$$

The frequency deviation with respect to the nominal oscillation frequency is given by:

$$\frac{\Delta f}{f_0} = \frac{f - f_0}{f_0} = \frac{1 + \frac{C_m}{2(C_0 + C_p)}}{1 + \frac{C_m}{2(C_0 + C_p)}} - 1$$

This allows us to determine the maximum frequency deviation that can occur when using a given crystal along with the variations in the equivalent parallel capacitance C_p.

5. QUARTZ CRYSTAL SPECS

The following table are the requirements for the crystal to be used in systems with the EM9304.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance frequency with a parallel load C_p</td>
<td>f_0</td>
<td>48.000</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational mode</td>
<td>Fundamental</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>C_L</td>
<td>10.0</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent series resistance</td>
<td>R_m</td>
<td>80</td>
<td>Ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total oscillation frequency deviation</td>
<td>df/f_0</td>
<td>-50</td>
<td>50</td>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>

The EM9304 data sheet recommends the NDK crystal NX1612SA which has the following specifications:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency tolerance</td>
<td>f</td>
<td>48.000</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational mode</td>
<td>Fundamental</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>C_L</td>
<td>10.0</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent series resistance</td>
<td>R_m</td>
<td>80</td>
<td>Ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total oscillation frequency deviation</td>
<td>df/f_0</td>
<td>-50</td>
<td>50</td>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>

6. GLOBAL CRYSTAL ACCURACY

The spreadsheet below uses the equations shown in section 4 and the manufactures specifications for the NDK NX1612SA crystal to calculate the global crystal accuracy for the EM9304 oscillator. The on-chip capacitors C_xin and C_xout are set by a configuration register, and can be adjusted to better centre the total frequency deviation. This register is trimmed at wafer test and a nominal value is written to.

The specifications of this crystal indicate the initial frequency precision, and the impact of temperature and of the aging for the frequency accuracy. The influence of the crystal loading components has to be calculated and taken into account in the overall frequency accuracy. A spreadsheet has been put together to tabulate contributors and calculate the overall accuracy for the EM9304 oscillator. This spreadsheet can be found on this forum under: Home → Resources → EM9304 Downloads → Tools → EM9304 48MHz frequency error calculator 0.1. The next section will show this spreadsheet used with the NDK NX1612SA quartz crystal.
the EM9304’s OTP memory. For crystals with different specifications this trim value may be changed which is discussed in a different app note.

7. QUARTZ CRYSTALS

The table below lists some crystals that have similar specifications to the one presented in section 5 for the 48.000MHz EM9304 oscillator. Cost, availability and package size may be other factors to drive the selection of a particular quartz crystal from a particular manufacturer. Each of the crystals below has been tested by EM on the DVK to meet EM9304 specifications.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Size</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDK America, Inc.</td>
<td>1.6mm X 1.2mm</td>
<td>NX16125A-48MHZ-DS00A-CS10127</td>
</tr>
<tr>
<td>NDK America, Inc.</td>
<td>2.0mm X 1.6mm</td>
<td>NX20165A-48MHZ-DS00A-CS08673</td>
</tr>
<tr>
<td>Hosonic</td>
<td>1.6mm X 1.2mm</td>
<td>ETA8448C007500E</td>
</tr>
</tbody>
</table>

8. PRODUCT VALIDATION

For a particular product, the crystal parameters must be checked with the particular PCB and other support components. Measurements across temperature and voltage with several samples must be done to guarantee operation of the product in the specified environment.

The quartz crystals in section 7 have been tested on the DVK module with an EM9304 in a QFN package. PCB trace layout between the crystal and the EM9304 will add to the parasitic capacitances on the crystal terminals, shifting the oscillation frequency. This can be adjusted for with the trim register that is discussed in a separate app note.

Validation tests suggested are: HFXTAL centre frequency, HFXTAL enable consumption, HFXTAL start-up time, etc. Other tests may be added to ensure high quantity production generates acceptable failure rates.
EM Microelectronic-Marin SA (“EM”) makes no warranties for the use of EM products, other than those expressly contained in EM’s applicable General Terms of Sale, located at http://www.emmicroelectronic.com. EM assumes no responsibility for any errors which may have crept into this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein.

No licenses to patents or other intellectual property rights of EM are granted in connection with the sale of EM products, neither expressly nor implicitly.

In respect of the intended use of EM products by customer, customer is solely responsible for observing existing patents and other intellectual property rights of third parties and for obtaining, as the case may be, the necessary licenses.

Important note: The use of EM products as components in medical devices and/or medical applications, including but not limited to, safety and life supporting systems, where malfunction of such EM products might result in damage to and/or injury or death of persons is expressly prohibited, as EM products are neither destined nor qualified for use as components in such medical devices and/or medical applications. The prohibited use of EM products in such medical devices and/or medical applications is exclusively at the risk of the customer.