
 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

1 www.emmicroelectronic.com 

 

 Application Note 60 
Title: Frequently asked software questions for EM 8-bit 

Microcontrollers  
Product Family: CoolRISC core architecture 

Part Number: EM6812, EM9550, EM9551, EM9553, EM4275 
Keywords: CoolRISC, constant, initialized global variables, tables, programming, IntelHEX, sections, text, 

sections 
Date: July 28, 2005  

 
 
 
Table of contents: 
1. How to implement constants table ............................................................................... 2 
2. How to generate several text sections ......................................................................... 5 
3. What is the hex file format ........................................................................................... 8 
 

EM MICROELECTRONIC - MARIN SA 
 

 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

2 www.emmicroelectronic.com 

 

 
 

1. How to implement constants table 
 
 
CoolRISC architecture introduction 
 
CoolRISC architecture is based on Harvard RISC. 
Instructions are stored in the program memory and data are stored in a separate data memory. For some existing EM 
Microelectronic CoolRISC derivates there are no data ROM memories. It means constants, tables, initialized global 
variables can not be stored in a data section of the CoolRISC defined for the link (.data, .page0_data, .rodata).  These 
sections are defined as null. Nevertheless, it is possible to define such types (constants, tables, initialized global variables). 
To realize this operation, several approaches have to be considered: Tables in RAM – Tables in C functions – Tables in 
C/assembler. This application Note will introduce three different ways. 
 
Tables in C/assembler 
 
It draws a constant table embedded in the program memory field. This solution is recommended for large tables which 
require constant access time and limited memory size. It also gives easy insertion in a C-program and keep good compact 
size. 
Nb Instr. = V + D + (N*(D+1)) 
V = Overhead code for index decoding and range check 
D = Data size (1= byte, 2 = int, …) 
N = Data number in the table 
 
Table implementation 
 
The table has to be defined in a software routine able to return a constant value based on an index value given as 
parameter. 
 

 
Figure 1: Principle 

 
Each byte of data to be stored requires 2 instructions to restore the embedded byte value : 
 
A move instruction : move reg, #table_value 
A jump to the end of the table. 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

3 www.emmicroelectronic.com 

 

 
Examples of implementation 
 

• One dimension char table 
 
/* Example of table use */ 
if (GetConstTest(n)!= ExpectedArray[n]) 
 
/*----------------------------------------------------------------------------------------------------------------
*/ 
 
/* realize the move operation */ 
#define   DataStored(val)  {asm ("move  %r2,#"#val"");\ 
asm("JUMP .Lab_End");} 
 
unsigned char GetConstTest(unsigned char IndexConstTest) { 
// optional check index range. Here range is 0 <-> 45  
asm("CMP %r3,#46");     
asm("JGE .Lab_ErrorIndex");  
 /* compute the table defined below. Define where to find the value in the table. 
  One value stored each (2*n); memory location */  
asm("MOVE -(%i3,1),%ipl");   // store current ip 
asm("MOVE -(%i3,1),%iph"); 
asm("MOVE %iph,#HIWORD(.Lab_Table)");  // define table location start 
asm("MOVE %ipl,#LOWORD(.Lab_Table)"); 
asm("MUL  %r3,#2");   // find location from index 
asm("ADD  %ipl,%a"); 
asm("ADDC %iph,%r3"); 
asm("JUMP %ip");;   // table data definition 
asm(".Lab_Table:");   
DataStored(0xff);     // index 0 
DataStored(0xff);     // index 1 
DataStored(0xff);     // index 2 
… 
DataStored(0xff);     // index 44 
DataStored(0x1f);     // index 45 
// finish ... 
asm(".Lab_End:"); 
asm("MOVE %iph,(%i3,1)+");    // restore ip for next jump 
asm("MOVE %ipl,(%i3,1)+"); 
asm("JUMP %ip"); 
asm(".Lab_ErrorIndex:"); 
asm("Nop");    // 0 for index error 
return 0; 
} 
 

• Other dimensions table or data size 
 
The example above can be implemented as well for all 
possible needs (multi-array, int, long, …). 
Some examples are shown below. 
 
Int table: 
 
#define   DataStored(val1, val2)  {asm ("move  %r3,#"#val1"");\ 
asm ("move  %r2,#"#val2"");\ 
asm("JUMP .L_End");} 
 
int GetValue(unsigned char nIndex) { 
   asm("      ; checking index range.. 
      CMP     %r3,#16 
      JGE     .L__IndexError 
   "); 
   asm("     ; index range is ok, computing table entry address... 
         MOVE    -(%i3,1),%ipl 
         MOVE    -(%i3,1),%iph 
         MOVE    %iph,#HIWORD(.L__Start) 
         MOVE    %ipl,#LOWORD(.L__Start) 
         MUL     %r3,#3 
         ADD     %ipl,%a  
         ADDC    %iph,%r3 
          ; jumping to table entry...  
         JUMP    %ip 
     "); 
   asm("     ; data table 
         .L__Start: 
          ; index is 0 
         DataStored(0x00, 0x00);   

… 
          ; index is 15 
         DataStored(0x00, 0x0F);   
    ; end of table values 
   "); 
   asm("     ; end of the processing, exiting.. 
         .L__End: 
        MOVE    %iph,(%i3,1)+ 
        MOVE    %ipl,(%i3,1)+ 
       JUMP    %ip 
       .L__IndexError: 
   ; default return value for out-of-range index is ... 
   ");  

   return 0; 
Long table: 
 
#define   DataStored(val1, val2, val3, val4)  {asm ("move  %r3,#"#val1"");\ 
asm ("move  %r2,#"#val2"");\ 
asm ("move  %r1,#"#val3"");\ 
asm ("move  %r0,#"#val4"");\ 
asm("JUMP .L_End");} 
 
long GetValue(unsigned char nIndex) { 
   asm("     ; checking index range.. 
      CMP     %r3,#16 
      JGE     .L__IndexError 
   "); 
   asm("    ; index range is ok, computing table entry address... 
         MOVE    -(%i3,1),%ipl 
         MOVE    -(%i3,1),%iph 
         MOVE    %iph,#HIWORD(.L__Start) 
         MOVE    %ipl,#LOWORD(.L__Start) 
         MUL     %r3,#5 
         ADD     %ipl,%a  
         ADDC    %iph,%r3 
         ; jumping to table entry...  
         JUMP    %ip 
     "); 
   asm("    ; data table 
         .L__Start: 
       ; index is 0 
        DataStored(0x00, 0x0F, 0x04, 0x23);                 
          … ; index is 15 
        DataStored(0x10, 0x2F, 0x34, 0x29);                 
        ; end of table values 
   "); 
   asm("    ; end of the processing, exiting.. 
         .L__End: 
   MOVE    %iph,(%i3,1)+ 
   MOVE    %ipl,(%i3,1)+ 
   JUMP    %ip 
         .L__IndexError: 
   ; default return value for out-of-range index values is given by the next C 
code... 
   ");  
   return 0; 
   } 
 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

4 www.emmicroelectronic.com 

 

 
Tables in RAM 
It draws a constant table by coding initialization RAM. It is recommended for short access time and size limited tables. 
Moreover, user has to ensure data integrity no overwrite) and handle data location. 
Nb Instr. = v+ 2*N*D 
Data RAM = D*N 
V = Overhead code 
D = Data size (1= byte, 2 = int, …) 
N = Data number in the table 
 
DataInit: 
 move -(i3), ipl 
 move -(i3), iph 
 move i0h, #HIWORD(_spage0data) 
 move i0l, #LOWORD(_spage0data) 
 move a, #0x01 
 move (i0)+, a ; Addr = 0x61 
 move a, #0x04 
 move (i0)+, a ; Addr = 0x62 
 … 
 move iph, (i3)+ 
 move ipl, (i3)+ 
 rets 
 
Data initialization 
It is possible to implement a mechanism which automatically generate DataInit code. By using binary tools an assembler file 
can be fulfilled with init code and linked with the others source project in order to generate a DataInit piece of code. By 
using this mechanism, user can writes its code with no restriction in term of coding (C constant declaration, initialized global 
variables, …). This solution is suitable as long as Tables in RAM can be used in the project (size limited tables). 
This solution is provided since EM CoolRISC Environment 2 V3.0.  
 
The corresponding project example is available (contact EM Microelectronic). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

5 www.emmicroelectronic.com 

 

 
 
 

2. How to generate several text sections 
 
 
Introduction 
 
This application note shows how to write code using several code areas. It is useful when you want to constraint a piece of 
code to be loaded in a specific memory location.  
This Application Note introduces a general way to define the different sections used to store assembler and/or C-code.  
There are various ways to define the mapping: one section for each memory area, one memory for several sections, etc … 
 
Example 
 
In this example we create three code sections for an 8K instructions code memory size stored in two memory areas. 
The goal is to reserve and store four instructions in the .text1 section and four other instructions in the .text2 instructions.   
The content of .text1 is generated from assembler code and .text2 from C-code. 
 

 
MCU address 
 

 
Linker Mapping 

 
Memory 

 
Section 

0x0 0x100000 
  
0x1FF7 0x107FDF 

 
main_rom 

 
.text 

0x1FF8 0x107FE0 
  
0x1FFB 0x107FEF 

 
.text1 

0x1FFC 0x107FF0  
  .text2 
0x1FFF 0x107FFF 

 
 
special_rom 

 
Table 1: Memory organization summary 

 
Note: CoolRISC Mapping rule 
 
 In the mapping of the linker script a positive 0x100000 offset is added for the code.  
 Each instruction word takes four bytes (whereas one instruction is 22-bit wide).  

 
Linker script 
The linker script (crt0.ld) must contain the following information: 
… 
MEMORY 
{ 
  main_rom         : ORIGIN = 0x00100000, LENGTH = 4*8K - 32 
  special_rom     : ORIGIN = 0x00107FE0, LENGTH = 32  
 …       
} 
… 
SECTIONS  
{ 
.text :    /* THE MAIN CODE IS STORED IN THE .TEXT SECTION */ 
    { 
        _stext = .; 
        *(.text ) 
        _etext = .; 
        _eprom = .; 
    } > main_rom   
.text1 0x107FE0 :  /* THE CODE 1 IS STORED IN THE .TEXT1 SECTION */ 
    { 
    *(.text1) 
      _eprom = .; 
    } > special_rom 
.text2 0x107FF0 :  /* THE CODE 2 IS STORED IN THE .TEXT2 SECTION */    
    { 
    *(.text2) 
      _eprom = .; 
    } > special_rom 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

6 www.emmicroelectronic.com 

 

    
 
Once, this linker definition is done, it is necessary to explicitly constraint the code to its section destination.  
 
Assembler 
 
 For the assembler code, It’s required to add specific directives to give information to the linker and loader that the new 
section (.text1) has to be taken in account. 
 
In our example (special_code_1.s): 
 
.section .text1,"ax",@progbits 
.global _code_1 
 
_code_1: 
    nop 
    nop 
    nop 
    ret  
 
Note: section directive 
 
A summary of the most common options are described here. 
The directive section to assemble assembler code into a section is defined as follow (we have to consider ELF format 
version) : 
 
.section name, “flags”, @type 
 
The quoted “flags” argument may contain a combination of the following characters: 
a (allocatable) / w (writable)  / x (executable) / M (mergeable) 
The optional type may contain one of the following constants: 
@progbits (contains data) / @nobits (only occupies space) / @note (data but not used by program) 
In our case the “ax”, @progbits tells the assembler that the section is allocatable (a”), executable (“x”) and contains data 
(@progbits). 
 
C-code 
 
For the C-code, it is necessary to define the section where the code must be located. It is done by adding an attribute which 
define the section. 
 
In our example (special_code_2.c): 
 
void code_2(void) 
{ 
  asm("nop"); 
  asm("nop"); 
  asm("ret");    // will be added one more instruction for jump ip 
}; 

 
With the following function prototype (special_code_2.h): 
 
void code_2 (void) __attribute__ ((section (".text2"))); 
 
Results 
 
The disassembly code is: 
 
1FF4  000000                       move     FF, #FF 
1FF5  000000                       move     FF, #FF 
1FF6  000000                       move     FF, #FF 
1FF7  000000                       move     FF, #FF 
                                   _code_1 
1FF8  3FFFFF                       nop       
1FF9  3FFFFF                       nop       
1FFA  3FFFFF                      nop       
1FFB  3F3FFF                      ret       
                                   code_2 
1FFC  3FFFFF                      nop       
1FFD  3FFFFF                      nop       
1FFE  3F3FFF                       ret       
1FFF  23FFFF                       jump     ip 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

7 www.emmicroelectronic.com 

 

 
The output ELF file contain the different information:  
 
Section Headers: 
  [Nr] Name               Type            Addr      Off         Size     ES Flg Lk Inf Al 
  [ 0]                    NULL            00000000  000000 000000 00      0  0   0 
  [ 1] .text              PROGBITS   00100000  0000d4 00035c 00   AX  0   0  1 
  [ 2] .text1             PROGBITS   00107fe0  000430 000010 00   AX  0   0  1 
  [ 3] .text2             PROGBITS   00107ff0  000440 000010 00   AX  0   0  1 

… … … … 
 
Key to Flags: 
  W (write), A (alloc), X (execute), M (merge), S (strings) 
  I (info), L (link order), G (group), x (unknown) 
  O (extra OS processing required) o (OS specific), p (processor specific) 
 
Program Headers: 
  Type           Offset    VirtAddr    PhysAddr    FileSiz    MemSiz  Flg Align 
   … … … … 
  LOAD           0x0000d4  0x00100000 0x00100000  0x0035c 0x0035c R E 0x1 
  LOAD           0x000430  0x00107fe0  0x00107fe0  0x00020 0x00020 R E 0x1 
 
 Section to Segment mapping: 
  Segment Sections... 

… … … … 
   03     .text  
   04     .text1 .text2 
 
The corresponding project example is available (contact EM Microelectronic). 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

8 www.emmicroelectronic.com 

 

 
3. What is the hex file format 

 
 
Introduction 
This application note introduces the object IntelHEX file Format used for CoolRISC loader and/or programmer. 
IntelHEX format is representing binary object file in hexadecimal ASCII. It describes the CoolRISC code/data of the 
microcontroller to store/load with corresponding address to be loaded. 
For most cases it only contains program code but it can also enclose data field in case data ROM exist (sections .data, 
.rodata, page0_data). 
IntelHex file is generated from the output ELF linker file with a format tool converter (e.g c816-objcopy, c816-srec2rom …) 
 
Note: For detailed and general IntexHEX specification please refer to the Intel literature. 
 
IntelHEX overview 
An IntelHEX format is made of records. Each record contains: 

 record type, 
 length, 
 memory load address, 
 checksum. 

 
Each record is based on: 
: XX XXXX XX XX…XX XX 
Record 
mark 
 

Record length 
(nb of bytes of 
information/data 
which follow the 
Record type) 
 

Load offset 
(gives the 16-bit 
starting load offset 
of data bytes -> 
Data records. For 
other record it is 
0x0000) 

Record Type 
00 Data 
01 End of file 
02 Extended Segment address 
03 Start Segment address 
04 Extended Linear Address 
05 Start Linear address 

Data / 
Information 
 

Cheksum CRC 
Sum of Bytes + CRC = 0 
 

Notes: 
I. X is a nibble 
II. Main record Types used for CoolRISC are: 

 Extended Linear address “:02000004X…X” 
 End of file “:00000001FF” 
 Data “:XXXXXX00X…X” 
 Start Linear address “:04000005X…X” 

III. Extended Linear address record is used before data record when an offset is greater than 16-bits (offset > 0xFFFF -> 
32-bits mode). 
 
CoolRISC example 
The following example shown describes a program section. For all CoolRISC targets an offset of 0x100000 must be set 
(.text section start at 0x100000). 
 
intelHex file example: 
 
:020000040010EA      -> See note A 
:100000000033FFFB0033FFDF0033FFAC0033FF7D25  -> See note B 
:10001000000EA7FD000EA6A0000EA3FF000EA29FDB  -> See note C 
:10002000000EA5FF000EA49E0033FFF300035E0147 
… 
:100330000023FFFF0023FFFF0023FFFF0023FFFF39 
:080340000023FFFF0023FFFF73     -> See note D 
:0400000500100000E7      -> See note E 
:00000001FF       -> See note F 



 

 
 
 
 

 AppNote 60
 

   

Copyright © 2006, EM Microelectronic-Marin SA 
05/06, rev. A 

9 www.emmicroelectronic.com 

 

 
Note A: 
:02000004 0010 EA 

Type = Extended Linear address definition LBA = Define the Linear Base Address. 0x0010 is used for the ULBA (upper bits): 
- ULBA= [31:16] bits. 
- [15:0] are always 0x0000 
-> Gives the 0x100000 offset for the code area 

CRC 
 

This record introduce code. Due to the extended value offset, it is necessary to set extended mode. All IntexHex files for 
CoolRISC always start with :020000040010EA. In case code a piece of code is located to a lower address (16-bit range), 
this extended Linear address is not necessary and code could be defined within a Data record with the offset (e.g. with 
offset 0x900 : :10900000033FFFB0033FFDF0033FFAC0033FF7DXX) 
 
Note B: 
:10 0000 00 0033FFFB, 0033FFDF, 

0033FFAC, 0033FF7D 
25 

Number of pairs 
(=2*n bytes) 

Address (start address for the current line) 00 
Data Record 

words  CRC 
 

Each instruction is four Bytes. Number of bytes for each line is 16d (10h) (so 4 instructions per line) 
 
Note C: 
:10 0010 00 000EA7FD, 000EA6A0, 

000EA3FF, 000EA29F 
DB 
 

Number of pairs 
(=2*n bytes) 

Address (start address for the current line) 00 
Data Record 

words  CRC 
 

 
Note D: 
:08 0340 00 0023FFFF, 

0023FFFF 
73 
 

Number of pairs 
(=2*n bytes) 

Address (start address for the current line) 00 
Data Record 

words  CRC 
 

End of code data record. 
 
Note E: 
:04000005 00100000 E7 

Type = 32-bits Start 
Linear address 
definition 

EIP= Linear address for EIP register CRC 
 

CRC 
 

It is used to define the execution start address for the object file. Force the address for the loader. 
All IntexHex files for CoolRISC finish with :020000040010EA followed by the end of file record. In fact this line is not 
necessary (execution is always 0x0000). 
 
Note F: 
:00000001FF 

Type= End of File 
The end of file record specifies the end of the hexadecimal object file. 
 
Data ROM and Initialized data: 
 
In case the target has data ROM some additional informations have to be defined for the ROM data memory. If ROM data is 
mapped on a 16-bit range adressing, it can simply be defined within a simple Data Record with offset definition. If it is on an 
extended (32-bit range addressing), an extended linear address record is required first. 
 
intelHex file sample example: 
 
:02006500010494     -> Data record - 2 bytes (0x01, 0x04) to store with offset 0x65 
:1001000008070001020304050A0B0C0D0E0F14155D -> Data record - 16 bytes (0x 08,…0x 15) - Offset 0x100 
:04011000161718198D     -> Data record - 4 bytes (0x16, …0x 19) - Offset 0x110 

 
EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the Company's 
standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no responsibility for 
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without 
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual 
property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not authorized for 
use as components in life support devices or systems. 

 


	1. How to implement constants table 
	CoolRISC architecture introduction 
	Tables in C/assembler 
	 
	Tables in RAM 
	Data initialization 
	2. How to generate several text sections 
	 
	Introduction 
	Example 
	Linker script 
	Assembler 
	C-code 
	Results 

	  
	3. What is the hex file format 
	Introduction 
	IntelHEX overview 
	CoolRISC example 
	Data ROM and Initialized data: 



