# RAIN RFID TRANSPONDER IC WITH CAPACITIVE SENSOR INTERFACE

#### DESCRIPTION

em|aura-sense is a member of the latest generation family of EM Microelectronic RAIN RFID<sup>TM</sup> devices. The chip combines capacitive sensing and RAIN RFID technology used for long range application purposes.

Target applications and market segments include smart manufacturing and industry 4.0 applications, predictive maintenance, Internet of Things (IoT), industrial sensing, and home automation.

The chip is compliant with ISO/IEC 18000-63 and EPC<sup>TM</sup> Gen2v2.

The em|aura-sense device allows to interface and capture sensing data with external sensor(s). Sensor commands are available to request sensing acquisition and store in the memory.

The capacitive sensor is external to the chip and can either be integrated in the inlay or as a separately mounted component, e.g. as an SMD component.

The em|aura-sense device is capable of supplying energy and/or driving external component.

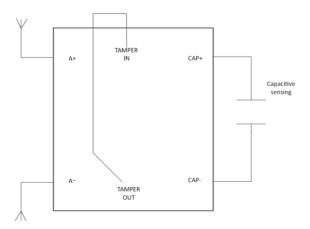
em|aura-sense offers a versatile non-volatile memory which is accessible via the RAIN RFID air interface and can be used for storing sensing information. Each IC is manufactured with a 96-bit unique Tag Identifier (TID) and delivered with a default 96-bit EPC encoded value that is a copy of the 96-bit TID.





RAIN RFID is a trademark of the RAIN RFID Alliance.

EPC is a trademark of EPCglobal Inc.

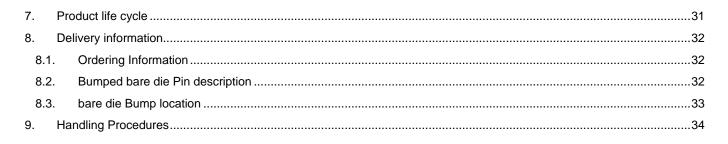

#### **FEATURES**

- Advanced RAIN RFID technology
- Sensing sensitivity: -18dBm with dipole antenna
- Read sensitivity with sensing disabled: -20dBm with dipole antenna
- Sensing and data storing: -15.5dBm with dipole antenna
- I Capacitance sensing effective range: 17pF
- 7-bit analog to digital conversion of inlay sensing capacitance
- Sensitivity:160fF/LSB, noiseRMS: 125fF
- I Sensing at boot and reporting with standard commands
- On demand sensing using Select or Write/BlockWrite command
- External supply power capability: 420uW
- I User Memory up to 2kbit memory
- Compatible with sensor + 1-step inlay manufacturing caps/resistive sensor
- | Minimum 10 years data retention
- | Extended temperature range: -40 to +85C
- Available in DFN package or bumped wafers

#### **APPLICATIONS**

1

- Smart manufacturing and industry 4.0 applications
- I predictive maintenance in industrial and aerospace settings
- I IoT, industrial sensing, and home automation






# **TABLE OF CONTENTS**

| 1.   | Product description                                  | 5  |
|------|------------------------------------------------------|----|
| 2.   | Typical Application                                  | 5  |
| 2.1. | . Capacitive sensing typical application             | 5  |
| 2.2. | 2. Tamper loop typical application                   | 5  |
| 2.3. | B. External device Supply&switch typical application | 6  |
| 2.1. | . Combination of Tamper and sensing functions        | 6  |
| 3.   | Block diagram                                        | 7  |
| 4.   | Electrical specifications                            | 8  |
| 4.1. | Absolute Maximum Ratings                             | 8  |
| 4.2. | 2. Operating Conditions                              | 8  |
| 4.3. | B. Electrical Characteristics                        | 8  |
| 4.4. | I. NVM Electrical Characteristics                    | 10 |
| 4.5. | 5. Timing Characteristics                            | 10 |
| 5.   | Functional Description                               | 11 |
| 5.1. | . Sensing functionalities                            | 11 |
| 5.   | 5.1.1. Capacitive Measurement                        | 11 |
| 5.   | 5.1.2. Measurement Error handling                    | 11 |
| 5.   | 5.1.3. Sensing at Boot                               | 12 |
| 5.   | 5.1.4. Sensing on demand                             | 13 |
| 5.2. | 2. Tamper functionality                              | 15 |
| 5.3. | B. External device supply functionality              | 15 |
| 5.   | 5.3.1. Overview                                      | 15 |
| 5.   | 5.3.2. ON/OFF mode configuration                     | 15 |
| 5.   | 5.3.3. Pad configuration                             | 18 |
| 5.4. | I. Commands                                          | 18 |
| 5.   | 5.4.1. List of available commands                    | 18 |
| 5.   | 5.4.2. Untraceable Command                           | 19 |
| 5.5. | 5. Privacy Using Untraceable Command                 | 19 |
| 5.6. | 5. Using the Tag Notification (TN) indicator         | 20 |
| 6.   | Memory                                               | 21 |
| 6.1. | . Memory organization                                | 21 |
| 6.2. | 2. Reserved Memory Bank                              | 21 |
| 6.3. | B. EPC/UII Memory Bank                               | 21 |
| 6.   | 5.3.1. StoredCRC WORD                                | 22 |
| 6.   | 5.3.2. StoredPC WORD                                 | 22 |
| 6.   | 5.3.3. EPC/UII words                                 | 22 |
| 6.   | 5.3.4. XPC_W1                                        | 23 |
| 6.   | 3.3.5. XPC_W2                                        | 24 |
| 6.4. | I. TID Memory Bank                                   | 25 |
| 6.5. | 5. User Memory Bank                                  | 26 |
| 6.   | 5.5.1. File_0 Memory                                 | 26 |
| 6.   | 0.5.2. System memory                                 | 26 |

# DATASHEET I em|aura-sense



# LIST OF FIGURES

| Figure 1 Example of application capacitive sensing without tamper loop                   | 5  |
|------------------------------------------------------------------------------------------|----|
| Figure 2 Example of application with tamper loop only                                    | 5  |
| Figure 3 Example of application with external LED diode supplied through SWITCH1/SWITCH2 | 6  |
| Figure 4 Example of application with external device supplied through SWITCH1/SWITCH2    | 6  |
| Figure 5 Example of application capacitive sensing with tamper loop                      | 6  |
| Figure 6 em aura-sense Block Diagram                                                     | 7  |
| Figure 7 Sense at Boot example                                                           | 12 |
| Figure 8 Sense at Select example                                                         | 13 |
| Figure 9 Write instructed sensing operation example                                      | 15 |
| Figure 10 AlwaysOn Mode                                                                  | 16 |
| Figure 11 In InventoryRound Mode                                                         |    |
| Figure 12 Singulated Mode                                                                | 17 |
| Figure 13 Selected Mode                                                                  | 17 |
| Figure 14 PCB bump position without scribe                                               | 33 |
|                                                                                          |    |

# LIST OF TABLES

| Table 1 Absolute maximum ratings                          | 8  |
|-----------------------------------------------------------|----|
| Table 2 Operating Conditions                              | 8  |
| Table 3 Electrical Specifications for UHF communication   | 8  |
| Table 4 Electrical Specifications for capacitive sensing  | 9  |
| Table 5 Electrical Specifications for tamper loop         | 9  |
| Table 6 External device supply specifications             |    |
| Table 7 NVM Electrical Specifications                     |    |
| Table 8 Timing Characteristics                            |    |
| Table 9 XPC_W2 as accessed by a <i>Select</i> command     | 13 |
| Table 10 XPC_W2 as accessed by a Select command fields    | 13 |
| Table 11 Structure of the write instructed sensor request |    |
| Table 12 Write instructed command                         | 14 |
| Table 13 Pad state definition                             | 18 |
| Table 14 List of commands supported by em aura-sense      | 18 |
| Table 15 Untraceable command                              | 19 |
| Table 16 Notification setting                             | 20 |
| Table 17 Memory organization                              | 21 |
| Table 18 Description of the reserved memory bank          | 21 |
| Table 19 Description of the StoredPC word for Gen2 V2.X   | 22 |



A COMPANY OF THE SWATCH GROUP

| Table 20 Write access for Gen2 V2.X                     | 22 |
|---------------------------------------------------------|----|
| Table 21 Description of the StoredPC word for Gen2 V1.X |    |
| Table 22 Write access for Gen2 V1.X                     | 22 |
| Table 23 Description of the XPC_W1                      |    |
| Table 24 Description of the XPC_W1 bits                 | 23 |
| Table 25 Description of the XPC_W2                      | 24 |
| Table 26 Description of the XPC_W2 fields               | 24 |
| Table 27 Description of the TID memory                  |    |
| Table 28 TID option - Tamper detection                  | 25 |
| Table 29 TID option - Legacy PC                         | 25 |
| Table 30 System memory register map                     | 26 |
| Table 31 Description of SYS_CONF_W1                     | 27 |
| Table 32 Description of SYS_TAMPER_LOCK                 | 28 |
| Table 33 Description of SENSOR_CALIB                    | 28 |
| Table 34 Description of SENSOR_CTRL_W1                  | 29 |
| Table 35 Description of SENSOR_DATA_STORED              | 29 |
| Table 36 Description of EXTPADCTRL_CONF                 |    |
| Table 37 Ordering Information                           | 32 |
| Table 38 Pin-out description                            | 32 |
|                                                         |    |



# 1. PRODUCT DESCRIPTION

em|aura-sense is used in passive UHF applications operating at 860MHz-960MHz. It is powered by the RF energy transmitted by the UHF reader, which is received and rectified to generate a supply voltage for the IC.

This device is compliant with the following UHF standards:

- "ISO/IEC 18000-63:2015 Information technology Radio frequency identification for item management Part 63: Parameters for air interface communications at 860 MHz to 960 MHz Type C", Publication Date: 2015-10
- "EPC<sup>™</sup> Radio-Frequency Identity Protocols, Generation-2 UHF RFID, Specification for RFID Air Interface Protocol for Communications at 860 MHz 960 MHz, Release 2.1, Ratified, Jul 2018" from GS1 EPCglobal Inc.

In addition to the preceding standards, the device is able to handle sensor acquisitions, triggered by standard commands. These sensing operating modes are described in the following section 2. This product includes the vendor defined snapshot sensor in accordance with the pending revision of ISO/IEC 18000-63.

# 2. TYPICAL APPLICATION

em|aura-sense is designed to handle 5 typical applications. Any other combinations are not guaranteed. The typical application diagrams are described in the sections below.

# 2.1. CAPACITIVE SENSING TYPICAL APPLICATION

The typical application for is to connect a sensing capacitor CSENSE to the CAP+/CAP- pads and A+/A- to the antenna see Figure 1 and Figure 5. In this application, the capacitance value of CSENSE is dependent on the physical parameter intended to be measured. The operational modes are described in section 5.1.

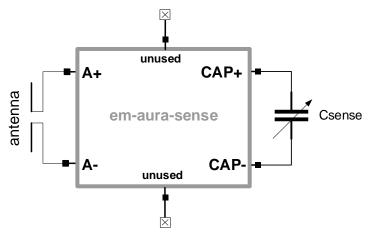



Figure 1 Example of application capacitive sensing without tamper loop

#### 2.2. TAMPER LOOP TYPICAL APPLICATION

Tamper loop can be configured and used with the following application diagram below. The operational modes are described in section 5.2.

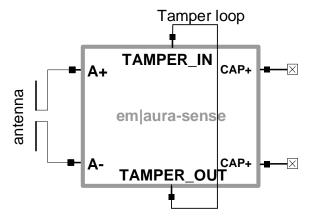
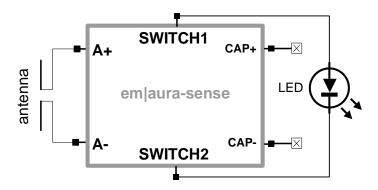




Figure 2 Example of application with tamper loop only

# 2.3. EXTERNAL DEVICE SUPPLY&SWITCH TYPICAL APPLICATION

em|aura-sense has the capability to supply and provide energy to an external device through the pins SWITCH1 and SWITCH2 as shown in the diagram below. The operational modes are described in section 5.3.



#### Figure 3 Example of application with external LED diode supplied through SWITCH1/SWITCH2

An external device can also be connected through the 2 pins SWITCH1 and SWITCH2. Each pin can be driven to a low, a high potential or be kept floating. The operational modes are described in section 5.3.

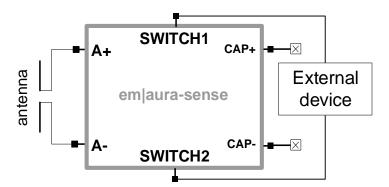
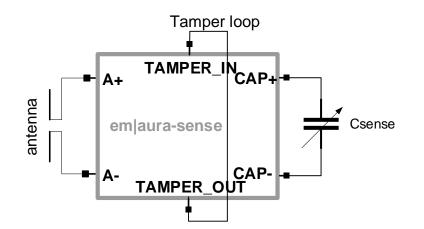




Figure 4 Example of application with external device supplied through SWITCH1/SWITCH2

# 2.1. COMBINATION OF TAMPER AND SENSING FUNCTIONS

The tamper function and the sensing capability can be combined in one application diagram as shown in the figure below.









# 3. BLOCK DIAGRAM

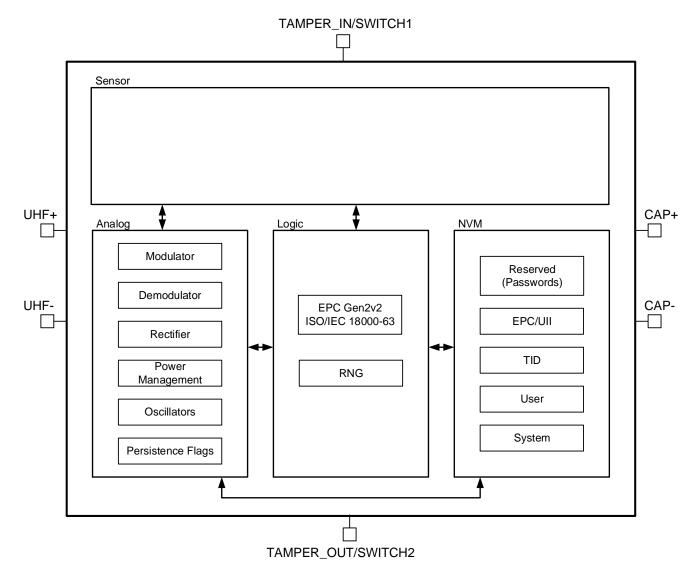



Figure 6 em|aura-sense Block Diagram

# 4. ELECTRICAL SPECIFICATIONS

# 4.1. ABSOLUTE MAXIMUM RATINGS

| PARAMETER                                                               |       | LUE  |      |
|-------------------------------------------------------------------------|-------|------|------|
| PARAMETER                                                               | MIN   | MAX  | UNIT |
| RF power at antenna attached to A+, A- <sup>1)</sup>                    |       | 25   | dBm  |
| Storage Temperature Range (Tstg)                                        | -50   | 125  | °C   |
| Electrostatic discharge to ANSI/ESDA/JEDEC JS-001 for HBM <sup>2)</sup> | -2000 | 2000 | V    |

Note 1: Antenna matched to IC impedance at read sensitivity (PREAD)

Note 2: Human Body Model (HBM; 100pF; 1.5kOhm) for all combinations between pads/pins. ESD measurements are made with die mounted into CDIP packages

#### Table 1 Absolute maximum ratings

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

WARNING: The device is not functional when exposed to light, it is mandatory to protect the device from light during the assembly process or in the use case.

# 4.2. OPERATING CONDITIONS

| PARAMETER                                        | SYMBOL              | MIN | TYP | MAX | UNIT |
|--------------------------------------------------|---------------------|-----|-----|-----|------|
| Operating temperature                            | Top                 | -40 | 25  | +85 | °C   |
| Operating RF power at antenna attached to A+, A- | P <sub>MAX-OP</sub> |     |     | 20  | dBm  |
| RF carrier frequency                             | fA                  | 860 |     | 960 | MHz  |

**Table 2 Operating Conditions** 

# 4.3. ELECTRICAL CHARACTERISTICS

| PARAMETER                                                                         | SYMBOL          | CONDITIONS                                                                                           | MIN | TYP                        | MAX | UNIT       |
|-----------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------|-----|----------------------------|-----|------------|
| IC equivalent serial input<br>impedance when sensor is<br>activated <sup>3)</sup> | Z <sub>AB</sub> | $f_{A}$ =866MHz, at read sensitivity $P_{READ}$<br>$f_{A}$ =915MHz, at read sensitivity $P_{READ}$   |     | 24.7-j284.3<br>23.7-j270.4 |     | Ω<br>Ω     |
| IC equivalent serial input impedance when sensor is deactivated <sup>3</sup>      |                 | f <sub>A</sub> =866MHz<br>f <sub>A</sub> =915MHz                                                     |     | 17.8-j286<br>17.6-j271.9   |     | Ω<br>Ω     |
| IC read sensitivity <sup>4)5)6)</sup>                                             | Pread           | Sensing is deactivated and for V001<br>(see section 5.1)<br>$f_A=866MHz$<br>$f_A=915MHz$             |     | -18<br>-18                 |     | dBm<br>dBm |
| IC write sensitivity <sup>4)5)6)</sup>                                            | Pwrite          | Sensing activated or<br>deactivated and for V001<br>f <sub>A</sub> =866MHz<br>f <sub>A</sub> =915MHz |     | -13.5<br>-13.5             |     | dBm<br>dBm |
| IC sense and read sensitivity <sup>4)5)6)</sup>                                   | Psense          | Sensing activated<br>f <sub>A</sub> =915MHz                                                          |     | -16                        |     | dBm        |

Unless otherwise specified: Top=25°C

Note 3: Measured directly on wafer with a 100Ω differential network analyzer at minimum operating RF power level

Note 4: IC impedance conjugate matched to antenna at read sensitivity (P<sub>SENSE</sub>)

**Note 5**: Interrogator using PR-ASK modulation with link parameters Tari =  $25 \ \mu$ s, PR = 1.5, BLF =  $256 \ \text{KHz}$  with Miller-4 encoding

Note 6: Sensitivity values are for IC devices in die form and do not include antenna gain

#### Table 3 Electrical Specifications for UHF communication



#### Unless otherwise specified: Top=25°C

| PARAMETER                                    | SYMBOL                  | CONDITIONS                                                                                                                                       | MIN | TYP   | MAX  | UNIT   |
|----------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------|--------|
| C <sub>SENSE</sub> Sensing capacitance range | CRANGE                  |                                                                                                                                                  | 0   |       | 17   | pF     |
| Sensing resolution                           | Cres                    |                                                                                                                                                  | -   | 7     | -    | bit    |
| Capacitive Sensitivity                       | CSENSITIVITY            | Ideal regression sensitivity curve (excluding Non-linearity and noise)                                                                           |     | 150   |      | fF/LSB |
| Noise                                        | NOISERMS                | RMS noise at room temperature<br>Csense <17pF                                                                                                    |     | 0.161 |      | pF     |
| Integral Non-Linearity                       | INL <sub>SENSE</sub>    | Error between the measured<br>capacitance and best fit line on 25%-<br>85% of the sensing capacitance<br>range at room temperature<br>CSENSE <15 |     | 0.3   |      | pF     |
| Fixed Manufacturing Offset                   | Manufactu<br>ringOffset | Capacitance measured on the wafer at 25deg.C                                                                                                     | -8  |       | 16.5 | LSB    |

Table 4 Electrical Specifications for capacitive sensing

| Unless otherwise specified: T=T <sub>OP</sub>                                               |         |                                                                                               |     |               |      |      |  |
|---------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------|-----|---------------|------|------|--|
| PARAMETER                                                                                   | SYMBOL  | CONDITIONS                                                                                    | MIN | TYP           | MAX  | UNIT |  |
| Tamper loop maximum capacitance                                                             | Смах    | Measured between tamper pads                                                                  |     |               | 12.5 | pF   |  |
| Tamper loop maximum inductance                                                              | Lмах    | Measured between tamper pads                                                                  |     |               | 40   | nH   |  |
| Resistance connected between<br>TAMPER_IN and TAMPER_OUT<br>to assure a closed (short) loop | Rclosed | Cloadmax between tamper<br>pads/pins = 12.5pF;<br>Tamper loop enabled                         |     |               | 1    | MΩ   |  |
| Resistance connected between<br>TAMPER_IN and TAMPER_OUT<br>to assure an open (broken) loop | Ropen   | Cloadmax between tamper<br>pads/pins = 12.5pF;<br>Tamper loop enabled                         | 10  |               |      | MΩ   |  |
|                                                                                             |         | RF power = P <sub>READ</sub> ;<br>Pads configured for HI-Z;<br>f <sub>A</sub> = 866MHz        |     | 5.2<br>-j106  |      | Ω    |  |
| Input impedance between                                                                     |         | RF power = P <sub>READ</sub> ;<br>Pads configured for Tamper Loop;<br>f <sub>A</sub> = 866MHz |     | 17.5<br>-j106 |      | Ω    |  |
| TAMPER_IN and TAMPER_OUT                                                                    | ZTAMPER | RF power = P <sub>READ</sub> ;<br>Pads configured for HI-Z;<br>f <sub>A</sub> = 915MHz        |     | 5.1<br>-j101  |      | Ω    |  |
|                                                                                             |         | RF power = P <sub>READ</sub> ;<br>Pads configured for Tamper Loop;<br>f <sub>A</sub> = 915MHz |     | 16.1<br>-j101 |      | Ω    |  |

Table 5 Electrical Specifications for tamper loop



Unless otherwise specified: T=T<sub>OP</sub>

| Unless Unlerwise Specified. 1–10P                                                                 |           |                                                         |     |              |     |      |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------|-----|--------------|-----|------|--|--|--|
| PARAMETER                                                                                         | SYMBOL    | CONDITIONS                                              | MIN | TYP          | MAX | UNIT |  |  |  |
| External device Supply Power                                                                      | PSUPPLY   | Power provided to a red LED diode in Typical conditions |     | 420          | -   | uW   |  |  |  |
| IC equivalent serial input impedance when driving a red LED diode with $P_{SUPPLY}$ <sup>7)</sup> | ZABSUPPLY | f <sub>A</sub> =915MHz, at read sensitivity<br>PSUPPLY  | -   | 118.5-j212.8 | -   | Ω    |  |  |  |

Note 7: Measured directly on wafer with a 100Ω differential network analyzer at minimum operating RF power level

Table 6 External device supply specifications

# 4.4. NVM ELECTRICAL CHARACTERISTICS

Unless otherwise specified: T=TOP

| PARAMETER                              | SYMBOL           | CONDITIONS | MIN | TYP | MAX | UNIT  |  |  |
|----------------------------------------|------------------|------------|-----|-----|-----|-------|--|--|
| Retention                              | T <sub>RET</sub> | T = 55°C   | 10  |     |     | Years |  |  |
| Table 7 NV/M Electrical Specifications |                  |            |     |     |     |       |  |  |

**Table 7 NVM Electrical Specifications** 

# 4.5. TIMING Characteristics

| PARAMETER           | SYMBOL        | CONDITIONS                  | MIN | TYP   | MAX | UNIT |
|---------------------|---------------|-----------------------------|-----|-------|-----|------|
| Conversion leadtime | TCONVERSIONLT | excluding the settling time |     | 0.572 |     | ms   |

Table 8 Timing Characteristics

# 5. FUNCTIONAL DESCRIPTION

# 5.1. SENSING FUNCTIONALITIES

The em|aura-sense device is capable of measuring the capacitance value of a capacitor connected between the two pads CAP+ and CAP-. Specifications for the capacitive sensing are described in 5.1.1.

The device is able to perform a sensor measurement during power-up or on demand from an interrogator depending on "Sense At Control" configuration selected (see Table 34). When SensAtBoot is enabled, Tag initiates a sensor measurement during power-up sequence as described in section 5.1.3, Sensing at Boot. When SensAtSelect is enabled, Interrogator can initiate on demand a sensor measurement by using a Select command on XPC\_W2 (see 5.1.4.1, Sensing at Select). When SensAtWrite is enabled, Interrogator can initiate on demand sensor measurement by using a Write/BlockWrite command to XPC\_W2 as described 5.1.4.2, Write instructed request.

In any cases, the SensorData (defined in Table 26) will be reported into XPC\_W2 word either in ACK reply or using a Read command.

#### 5.1.1. CAPACITIVE MEASUREMENT

The em|aura-sense capacitive sensor is producing a 8-bit positive value from the measurement of the external capacitor connected to its CAP+ and CAP- pad. This *RawData* is defined as follow:

$$RawData = \frac{C_{SENSE}}{C_{SENSITIVITY}} + ManufacturingOffset + 128$$

With CSENSITIVIY ManufacturingOffset and CSENSE as defined in Table 4 and Figure 1 .

Note 8: The value of CSENSE, taken into account in the calculation, is the sum of the sensing capacitor and the parasitic capacitor (internal and external to the IC) connected to the CAP+ and CAP- pads.

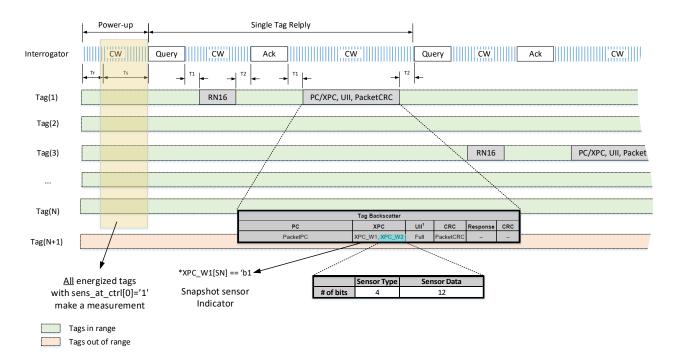
The error on the CSENSE measurement is the accumulation of NOISERMS and INLSENSE defined in Table 4.

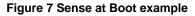
This device is offering the ability to calibrate the reported measurement. The calibrated sensing data (*SensingData*), a 10-bit signed integer reported in the XPC\_W2, is defined as follows:

With *CalibrationData* being an 8-bit positive data stored into NVM and may be changed using SENSOR\_CALIB register (see Table 33).

#### 5.1.2. MEASUREMENT ERROR HANDLING

em|aura-sense is able to report an error through the XPC\_W2 (see Table 26) if :


- o power supply goes too low during the acquisition to perform reliable measurement
- RawData variation is not as expected (eg. going below the CalibrationData) as defined in Table 16




#### 5.1.3. SENSING AT BOOT

When SensAtBoot is enabled (see Table 34), the sensor performs the sensor measurement during power-up after the device boot operation is completed, during  $T_s$  (see Figure 7). The sensing is available starting with the first inventory round which includes the Tag; Data will be reported via XPC\_W2 (see Table 25) during the next ACK reply (see Figure 7) or using a Read command.

No NVM operation is required for this operation thus the sensitivity when sensing at boot is lower than the write sensitivity (see Table 3).

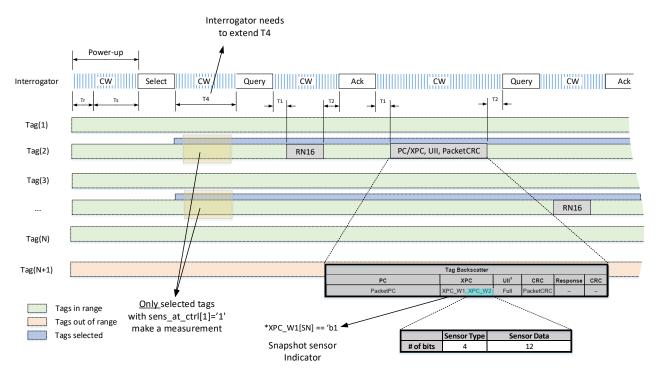




#### 5.1.4. SENSING ON DEMAND

#### 5.1.4.1. SENSING AT SELECT

When SensAtSelect is enabled (see Table 34), an Interrogator may initiate on demand sensor measurement by using a Select command on XPC\_W2, i.e. with <u>MemBank=01\_2</u>, <u>Pointer=8420\_h</u> (EBV format for 220\_h), <u>Length=10\_h</u>, and <u>Mask</u> as defined in Table 9 and Table 10. The sensor measurement occurs during T<sub>4</sub> (see Figure 8) and the Snapshot Sensor information shall be available starting with the next inventory round which includes the Tag if it remains energized. If T<sub>4</sub> is shorter than the sensor measurement time then the Tag might not remain energized. It is recommended to use a Select command to first create a population of Snapshot Sensor Tags and then use a Select command on XPC\_W2.


Note 9: These SensAtSelect operations are requiring an extension of minimum  $T_4$  between 15.625us and 62.5us parameter up to 1.2ms

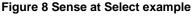

| WORD            | MSB<br>0 | 1 | 2                     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | LSB<br>F |
|-----------------|----------|---|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|----------|
| 22 <sub>h</sub> | Cmd      |   | SelectedSensor [14:0] |   |   |   |   |   |   |   |   |   |   |   |   |          |

Table 9 XPC\_W2 as accessed by a Select command

| FIELD NAME         | DESCRIPTION       | COMMENT                                                                                                                                                                                                        |
|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cmd                | Sensor<br>Command | <ul> <li>0: Tag shall not initiate measurements.</li> <li>1: Tag shall initiate a measurement if <i>SelectedSensor[0]</i> = 1<sub>b</sub> and <i>SensAtSelect</i> is enabled.</li> </ul>                       |
| Selected<br>Sensor | Sensor selector   | em aura-sense shall be considered matching when SelectedSensor[0] = $1_b$ and shall be considered non-matching if SelectedSensor[0] $\neq 1_b$ .<br>Note 1: SelectedSensor[14:1] are considered as don't care. |

Table 10 XPC\_W2 as accessed by a Select command fields





5.1.4.2. WRITE INSTRUCTED REQUEST

When SensAtWrite is enabled (see Table 34), Interrogator can initiate on demand a sensing acquisition by using Write or BlockWrite command to XPC\_W2, i.e. with MemBank=01<sub>2</sub>, WordPtr=22<sub>h</sub>, and Data as defined in Table 11 and Table 12 for Write, and MemBank=01<sub>2</sub>, WordPtr=22<sub>h</sub>, WordCount=1<sub>h</sub>, and Data as defined in Table 11 and Table 12 for BlockWrite. An Interrogator may initiate a measurement regardless of the lock or permalock status of EPC/UII memory. The sensor measurement occurs during T<sub>5</sub> (see Figure 9) and the Snapshot Sensor information shall be available for a subsequent Read of XPC\_W2 and/or starting with the next inventory round which includes the Tag.

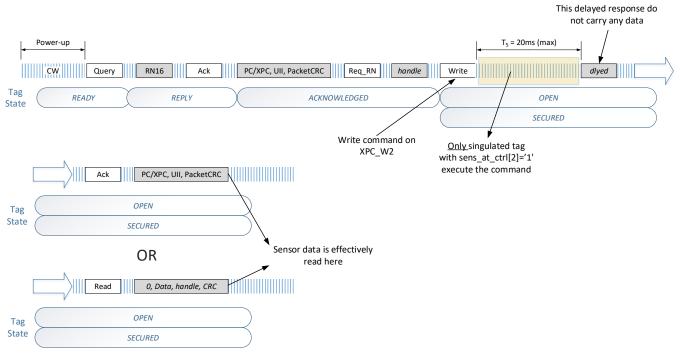
| WORD            | MSB<br>0 | 1     | 2       | 3 | 4 | 5 | 6 | 7 | 8 | 9      | A       | В  | С | D | Е | LSB<br>F |
|-----------------|----------|-------|---------|---|---|---|---|---|---|--------|---------|----|---|---|---|----------|
| 22 <sub>h</sub> |          | WI_CN | MD[3:0] |   |   |   |   |   | W | /I_PAR | AM[11:0 | 0] |   |   |   |          |

| Table 11 | Structure | of the | write | instructed | sensor | request |
|----------|-----------|--------|-------|------------|--------|---------|

When a reader issue a *Write/BlockWrite* command to XPC\_W2, the sensor tag interprets the Data field and executes the action as described Table 12 below.

| COMMAND<br>WI_CMD | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                              |                                |                              |                         |              |        |      |      |        | NVM<br>WRITE | SENSOR<br>ACQUISITION |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|--------------------------------|------------------------------|-------------------------|--------------|--------|------|------|--------|--------------|-----------------------|
| 1xxx <sub>2</sub> | <b>Sense only</b> : L<br>WI_PARAM[0] ≠                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                              |                                |                              |                         |              |        |      |      | l⊳. If | No           | Yes                   |
| 00012             | Sense and Stor<br>NVM if no acquis<br>This stored data<br>register (see Tat<br><u>Note:</u> In case of<br>NVM.                                                                                                                                                                                                                                                                                                                                     | sition failure<br>a is access<br>ble 35). WI <u>-</u> | e (e.g.<br>sible_th<br>_PARA | low vsu<br>irough a<br>M[11:0] | o error<br>a read<br>is igno | ) occu<br>into<br>pred. | irs.<br>SENS | SOR_E  | ΟΑΤΑ | _STC | RED    | Yes          | Yes                   |
|                   | Sense and Calibrate:Launch sensing acquisition and store the raw (not calibrated) sensing value into the NVM, if no acquisition failure (e.g. low vsuperror) occurs. This stored value will be used as CalibrationData for the following reported calibrated sensing Data (see section 5.1.1). This command also see calibration margin to be apply and optionally lock the calibration according to WI_PARAM value as follow :PARAM11109876543210 |                                                       |                              |                                |                              |                         |              |        |      |      |        |              |                       |
| 0010 <sub>2</sub> | Calibration Lock Calibration Margin                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                              |                                |                              |                         |              |        |      |      |        | Yes          | Yes                   |
|                   | <u>Note 1:</u> RFUs are don't care.<br><u>Note 2:</u> Tag is generating and ERROR LOCKED response in case "Sense and Calibrate" operation is requested when the calibration is already locked. No acquisition is done.                                                                                                                                                                                                                             |                                                       |                              |                                |                              |                         |              |        |      |      |        |              |                       |
| All others        | Reserved for Fu                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>ture Use.</i> T                                    | ag Tre                       | at these                       | comm                         | nand a                  | as NC        | OT SUI | PPOF | RTED |        | No           | No                    |

Note 10: in table above, 'x' means don't care.


#### Table 12 Write instructed command

Once the action described in the previous table is performed, the tag sends a delayed reply to the reader as it would for any other *Write* command (see Figure 9 below).

The sensing data will be then reported, either by a read of XPC\_W2 using a *Read* command or within an *ACK* reply.

The entire write instruction operation is described in Figure 9.





#### Figure 9 Write instructed sensing operation example

# 5.2. TAMPER FUNCTIONALITY

em|aura-sense provides a tamper detection feature that is user programmable. Refer to 6.5.2 for further information. If enabled, the device checks impedance of a continuity loop between two pads/pins during power-up. Tamper Detection can be implemented using a simple continuity loop, with heat sensitive fuse wire, with sensors having both high and low impedance states, or with external devices controlling an electronic switch such as a MOSFET. Tamper Detection is checked every transition from POR to Ready state. The Tamper alarm is both a registered value (volatile memory) and a latched value (non-volatile memory) when sufficient RF power is available to support an NVM write operation. The device performs a logical OR of both the volatile and nonvolatile Tamper alarms when reporting the Tamper status. Tamper status is reported to an Interrogator via the Sensor Alarm indicator (SA) in the XPC\_W1 word.

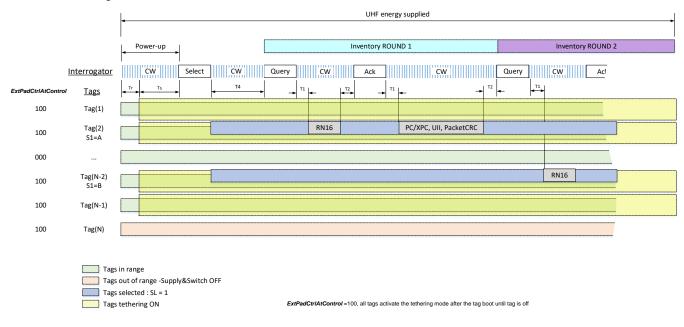
# 5.3. EXTERNAL DEVICE SUPPLY FUNCTIONALITY

#### **5.3.1. OVERVIEW**

em/aura-sense is capable of supplying an external device connected between the 2 pads SWITCH1 and SWITCH2. The SWITCH1/SWITCH2 pads can be put in 2 states (ON or OFF) depending on the chip configuration and on the current chip state. The five different ON/OFF condition possible are described in section 5.3.2 below. The pad configuration associated to ON and OFF state is defined in section 5.3.3.

#### **5.3.2. ON/OFF MODE CONFIGURATION**

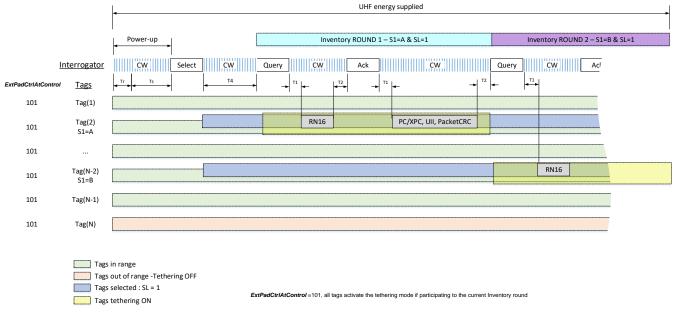
The ON/OFF mode is defined by the "ExtPadCtrl At Control" configuration selected within EXTPADCTRL\_CONF register (see Table 36). Each of the possible ON/OFF mode is described below.


#### **ALWAYS OFF** 5.3.2.1.

When "ExtPadCtrl At Control" = 0xx2, the Supply&Switch functionality is always deactivated. The SWITCH1 and SWITCH2 pads will always stay OFF.



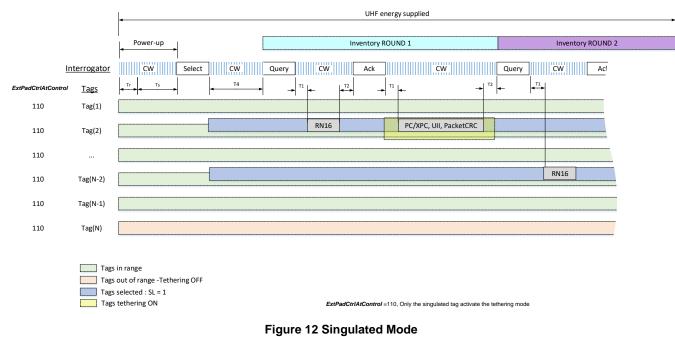
#### 5.3.2.2. ALWAYS ON


When "*ExtPadCtrl At Control*" = 100<sub>2</sub>, the Supply&Switch functionality stays ON after tag has done initialization and until UHF field is off as shown in Figure 10 below.



#### Figure 10 AlwaysOn Mode

#### 5.3.2.3. IN INVENTORY ROUND


When "*ExtPadCtrl At Control*" = 101<sub>2</sub>, only tags participating to the current inventory round, ie. being in Arbitrate, Reply, Acknowledged, Open or Secure state, will have their Supply&Switch pads in ON state as shown in Figure 11 below.



#### Figure 11 In InventoryRound Mode

#### 5.3.2.4. SINGULATED

When "*ExtPadCtrl At Control*" = 110<sub>2</sub>, only the singulated tag, ie. being in Acknowledged, Open or Secure state, will have their Supply&Switch Function in ON state as shown in Figure 12 below.



#### 5.3.2.5. SELECTED

When "*ExtPadCtrl At Control*" = 111<sub>2</sub>, all tags with SL flag asserted will have their Supply&Switch Function in ON state as shown in Figure 13 below.

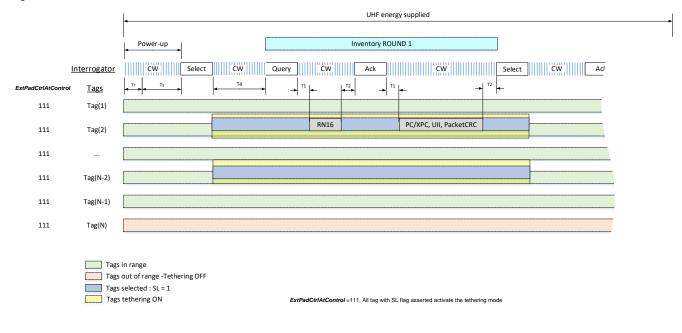



Figure 13 Selected Mode

#### 5.3.3. PAD CONFIGURATION

The definition of ON and OFF pad state is defined by the "*ExtPadCtrl Switch Mode*", "*ExtPadCtrl OFF State*" and "*ExtPadCtrl Active Pad*" configurations bits within EXTPADCTRL\_CONF register (see Table 36) and summarized in the Table 13 below.

| ExtPadCtrl  | ExtPadCtrl | ExtPadCtrl | ON      | State   | OFF State |          |  |
|-------------|------------|------------|---------|---------|-----------|----------|--|
| Switch Mode | OFF State  | Active Pad | SWITCH1 | SWITCH2 | SWITCH1   | SWITCH2  |  |
| 0           | 0          | 0          | VDD     | VSS     | Floating  | Floating |  |
| 0           | 0          | 1          | VSS     | VDD     | Floating  | Floating |  |
| 0           | 1          | 0          | VDD     | VSS     | VSS       | VDD      |  |
| 0           | 1          | 1          | VSS     | VDD     | VDD       | VSS      |  |
| 1           | 0          | 0          | VSS     | VSS     | Floating  | Floating |  |
| 1           | 0          | 1          | VDD     | VDD     | Floating  | Floating |  |
| 1           | 1          | 0          | VSS     | VSS     | VDD       | VDD      |  |
| 1           | 1          | 1          | VDD     | VDD     | VSS       | VSS      |  |

Table 13 Pad state definition

# 5.4. COMMANDS

#### 5.4.1. LIST OF AVAILABLE COMMANDS

| COMMAND        | COMMENT                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QueryRep       |                                                                                                                                                                                            |
| ACK            |                                                                                                                                                                                            |
| Query          |                                                                                                                                                                                            |
| QueryAdjust    |                                                                                                                                                                                            |
| Select         |                                                                                                                                                                                            |
| NAK            |                                                                                                                                                                                            |
| Req_RN         |                                                                                                                                                                                            |
| Read           |                                                                                                                                                                                            |
| Write          |                                                                                                                                                                                            |
| Kill           | Failed <i>Kill</i> command sequence results in a security timeout (~100ms typical).<br><u>Note</u> : Tag should have its configuration locked (see 6.5.2) in order to execute this command |
| Lock           | Note : Tag should have its configuration locked (see 6.5.2) in order to execute this command                                                                                               |
| Access         | Failed Access command sequence results in a security timeout (~100ms typical).                                                                                                             |
| BlockWrite     | Supports writing one to eight 16-bit words.                                                                                                                                                |
| BlockPermalock | User memory block size is four words.                                                                                                                                                      |
| Untraceable    | See section 5.4.2 below. U indicator bit and EPC field are not supported (ignored).                                                                                                        |
| (see below)    | Note : Tag should have its configuration locked (see 6.5.2) in order to execute this command                                                                                               |

Table 14 List of commands supported by em|aura-sense

#### 5.4.2. UNTRACEABLE COMMAND

The *Untraceable* command was introduced in Gen2V2 and may be used to hide some or all memory in the TID, EPC/UII, and/or User memory banks. *Untraceable* may also be used to reduce the read range of the Tag. The *Untraceable* command may only be used by an Interrogator that enters the Secured state using a non-zero Access password. Tags reply to an *Untraceable* using a delayed Tag reply.

| INTERROGATOR TO<br>TAG | # BITS | DECRIPTION                                                                                                    |
|------------------------|--------|---------------------------------------------------------------------------------------------------------------|
| Command Code           | 16     | E200h                                                                                                         |
| RFU                    | 2      | 002                                                                                                           |
| U                      | 1      | not supported (don't care)                                                                                    |
| EPC                    | 6      | Msb: must be 0 = show memory above L<br>5 lsb's (length): L value must be the same as the L value in StoredPC |
| TID                    | 2      | $00_2$ = hide none<br>$01_2$ = hide some (memory above 20h inclusive)<br>$10_2$ = hide all<br>$11_2$ = RFU    |
| User                   | 1      | 0 = show<br>1 = hide                                                                                          |
| Range                  | 2      | $00_2 = normal$<br>$01_2 = toggle (no effect)$<br>$10_2 = reduced (deactivated)$<br>$11_2 = RFU$              |
| RN                     | 16     | handle                                                                                                        |
| CRC                    | 16     | CRC-16                                                                                                        |

Table 15 Untraceable command

# 5.5. PRIVACY USING UNTRACEABLE COMMAND

Untraceable allows an Interrogator to instruct the em|aura-sense to (a) hide memory from Interrogators with a deasserted Untraceable privilege, and/or (b) reduce its operating range for all Interrogators. The memory that a Tag may hide includes words of the Tag serialization in TID memory, all of TID memory, and/or User memory. Untraceable and traceable Tags behave identically from a state-machine and command-response perspective; the difference between them is (a) the memory the Tag exposes to an Interrogator with a deasserted Untraceable privilege and/or (b) the Tag's operating range.

*Untraceable* may be used to change the operational read range of a Tag. em|aura-sense supports this feature in a manner that permits having either full read range (normal operation) or no read range (deactivated operation). A deactivated Tag always remains in the Ready state and will not participate in any inventory operations.

The Range parameter in the *Untraceable* command is used to specify the persistent operational read range of the Tag. If Range =  $00_2$  then the Tag persistently enables normal operation. If Range =  $10_2$  then the Tag persistently enables deactivation and the Tag becomes deactivated immediately upon reply to the *Untraceable* command. If Range =  $01_2$  then it has no effect on the Tag.

A deactivated Tag may be temporarily reactivated (normal operation) by any Interrogator using a *Select* command with any of the assigned EM Microelectronic Mask Designer ID's (MDID's) provided that the MDID is not untraceably hidden. The *Select* command parameters are MemBank =  $10_2$ , Pointer =  $08_h$ , and either Length =  $0C_h$  with matching Mask =  $00B_h$  or =  $40B_h$  or =  $80B_h$  or =  $C0B_h$ , or Length =  $10_h$  with matching Mask =  $00BX_h$  or =  $40BX_h$  or =  $80BX_h$  or =  $C0BX_h$  where X can be any hexadecimal value. Whenever a Tag is temporarily reactivated, it remains in the normal operational mode until the Tag loses power or executes another *Untraceable* with Range =  $10_2$ .

# 5.6. USING THE TAG NOTIFICATION (TN) INDICATOR

em|aura-sense allows to detect significant changes in the sensing data and report through the Tag Notification flag (TN) that is part of the XPC\_W1, itself part of the Tag reply to an ACK command. The detection is triggered when the calibrated data is bigger than a programmable value called CalibrationMargin. As the sensing data is affected by internal noise as described in section 5.1.1 and in table Table 4, applying a CalibrationMargin that is bigger than the noise will avoid to trigger the detection on the noise. Depending on the application, we want to detect significant changes that may be of positive sign, negative sign or both. Depending on the application, a significant negative change or a significant positive change may be considered as an anomaly and then reported as an error. Several cases can be configured using TN\_Reporting[1:0] bits of System Configuration Word 1 see Table 31.

If  $TN\_Reporting[1:0] = 00_2$ , the meaning of TN = 0 or TN = 1 is defined by the application. TN may only be modified by an authenticated Interrogator that asserts the TN privilege. The TN indicator bit may be modified regardless of the lock/permalock status of the EPC memory bank.

If TN\_Reporting[1:0] =  $01_2$ ,  $10_2$  or  $11_2$ , TN flag value depends on the value of SensingData Calibration margin and TN\_REPORTING. The table below describes how the detection is settled. When SensingData changes in unexpected direction and magnitude, an error is raised in XPC\_W2 see Table 16.

| TN_REPORTING[1:0] | REPORTING TYPE                           |               | DETECTIC                                | ON AND ERROR                       |                        |  |  |  |  |  |  |
|-------------------|------------------------------------------|---------------|-----------------------------------------|------------------------------------|------------------------|--|--|--|--|--|--|
| 002               | Application defined                      | Err           |                                         | le by the application _REPORTING[1 |                        |  |  |  |  |  |  |
|                   |                                          |               | -CalibrationMargin 0 +CalibrationMargin |                                    |                        |  |  |  |  |  |  |
| 012               | Reports when<br>SensingData is above the | SensingData - | Error                                   |                                    | Detection              |  |  |  |  |  |  |
|                   | calibration margin                       | SensingData - | TN = 0<br>ErrCalib = 1                  | TN = 0<br>ErrCalib = 0             | TN = 1<br>ErrCalib = 0 |  |  |  |  |  |  |
|                   |                                          |               | -CalibrationMargin 0 +CalibrationMargin |                                    |                        |  |  |  |  |  |  |
| 102               | Reports when<br>SensingData is below the | SensingData • | Detection                               | Margin Area                        | Error                  |  |  |  |  |  |  |
|                   | calibration margin                       | SensingData - | TN = 1<br>ErrCalib = 0                  | TN = 0<br>ErrCalib = 0             | TN = 0<br>ErrCalib = 1 |  |  |  |  |  |  |
|                   |                                          |               | -Calibrat                               | ionMargin<br>I                     |                        |  |  |  |  |  |  |
| 112               | Reports when<br>SensingData is out of    | SensingData - | Detection                               | Margin Area                        | Detection              |  |  |  |  |  |  |
|                   | calibration margin                       | SensingData = | TN = 1<br>ErrCalib = 0                  | TN = 0<br>ErrCalib = 0             | TN = 1<br>ErrCalib = 0 |  |  |  |  |  |  |

Table 16 Notification setting

# 6. MEMORY

Memory is organized in blocks of 64 bits, 4 words per block.

# 6.1. MEMORY ORGANIZATION

The EEPROM is allocated to the four memory banks as described in the following manner:

| MEMORY<br>BANK  | WORD<br>ADDRESS                     | CONTENTS        | BLOCK NUMBER FOR<br>BLOCKPERMALOCK | COMMENT                                                                                                                                                                                                                                                                                                |
|-----------------|-------------------------------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 002:            | 00 <sub>h</sub> - 01 <sub>h</sub>   | Kill Password   | n/a                                | See section 6.2                                                                                                                                                                                                                                                                                        |
| Reserved        | 02 <sub>h</sub> - 03 <sub>h</sub>   | Access Password | n/a                                | See section 6.2                                                                                                                                                                                                                                                                                        |
|                 | 00h                                 | StoredCRC       | n/a                                | See section 6.3.1                                                                                                                                                                                                                                                                                      |
|                 | 01 <sub>h</sub>                     | StoredPC        | n/a                                | See section 6.3.2                                                                                                                                                                                                                                                                                      |
| 012:<br>EPC/UII | 02h – 1Fh                           | EPC/UII         | n/a                                | Max encoding size is 480 bits<br>EPC/UII up to 128bit: Sense at Boot (see<br>section 5.1.1) without tamper can be done<br>with standard 1.5ms boot time<br>EPC/UII up to 480bit: Sense at Boot (see<br>section 5.1.1) without tamper can be done<br>with extended 1.9ms boot time<br>See section 6.3.3 |
|                 | 21 <sub>h</sub>                     | XPC_W1          | n/a                                | See section 6.3.4                                                                                                                                                                                                                                                                                      |
|                 | 22 <sub>h</sub>                     | XPC_W2          | n/a                                | Including the sensor data see section 6.3.5                                                                                                                                                                                                                                                            |
| 102: TID        | 00h - 05h                           | TID             | n/a                                | See section 0                                                                                                                                                                                                                                                                                          |
|                 | 00h - 03h                           |                 | 0                                  |                                                                                                                                                                                                                                                                                                        |
| 112:            | 03 <sub>h</sub> - 07 <sub>h</sub>   | User Defined    | 1                                  | See section 6.5.1                                                                                                                                                                                                                                                                                      |
| User            |                                     | User Denned     |                                    |                                                                                                                                                                                                                                                                                                        |
| (File_0)        | 78 <sub>h</sub> - 7B <sub>h</sub>   |                 | 30                                 |                                                                                                                                                                                                                                                                                                        |
|                 | 120 <sub>h</sub> - 130 <sub>h</sub> | System Memory   | n/a                                | See section 6.5.2                                                                                                                                                                                                                                                                                      |

Table 17 Memory organization

The four memory banks are described in the four sections below.

# 6.2. RESERVED MEMORY BANK

Reserved memory is as defined in ISO/IEC 18000-63 and EPC Gen2V2 specs.

| WORD            | MSB<br>0             | 1                       | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | LSB<br>F |
|-----------------|----------------------|-------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|
| 00h             |                      | Kill Password [31:16]   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| 01h             | Kill Password [15:0] |                         |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| 02 <sub>h</sub> |                      | Access Password [31:16] |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| 03h             |                      | Access Password [15:0]  |   |   |   |   |   |   |   |   |   |   |   |   |   |          |

Table 18 Description of the reserved memory bank

# 6.3. EPC/UII MEMORY BANK

EPC/UII memory is as defined in ISO/IEC 18000-63 and EPC Gen2V2 specs.

The Tag reply to an *ACK* includes a field that is commonly referred to as the PC word. The format and definition of the PC word for Gen2V2 is significantly different from their previous versions associated to the EPC Gen2 V1.x specifications. A description of the PC word in the *ACK* reply is provided below in section 6.3.2.

#### 6.3.1. STOREDCRC WORD

A memory self-check is performed for the EPC/UII memory at every power-up if the EPC/UII Memory Bank is locked or permalocked. The self-check compares the result of the dynamic CRC calculation for the StoredCRC during power-up with the static CRC calculation for the StoredCRC stored in NVM. If the CRC values do not match then Tag will reply to *ACK* with L=00000<sub>2</sub> in the PC word regardless of the actual value. An Interrogator could then consider the Tag for exception handling.

#### 6.3.2. STOREDPC WORD

#### 6.3.2.1. GEN2 V2.X FORMAT

The StoredPC word is described in the following table (Gen2 V2.1= Legacy Gen2 format disabled)

| WORD            | MSB<br>0   | 1 | 2 | 3 | 4   | 5    | 6    | 7   | 8 | 9                                       | А   | В  | С | D | Е  | LSB<br>F |  |  |
|-----------------|------------|---|---|---|-----|------|------|-----|---|-----------------------------------------|-----|----|---|---|----|----------|--|--|
|                 | L (Length) |   |   |   |     | UMI  | XI=0 | T=0 | В | С                                       | SLI | ΤN | U | К | NR | Н        |  |  |
| 01 <sub>h</sub> | L (Length) |   |   |   | UMI | XI=1 | T=0  | RFU |   |                                         |     |    |   |   |    |          |  |  |
|                 | L (Length) |   |   |   |     | UMI  | XI   | T=1 |   | ISO Application Family Identifier (AFI) |     |    |   |   |    |          |  |  |

Table 19 Description of the StoredPC word for Gen2 V2.X

| PARAMETER NAME | WRITE ACCESS                         |
|----------------|--------------------------------------|
| L              | Writeable                            |
| UMI            | Fixed to 1: User memory always exist |
| XI             | Computed                             |
| Т              | Writeable                            |
| AFI            | Writeable                            |
| RFU            | Fixed = 00 <sub>h</sub>              |

#### Table 20 Write access for Gen2 V2.X

#### 6.3.2.2. GEN2 V1.X FORMAT

The StoredPC word is described in the following table (Gen2 V1.x = Legacy Gen2 format enabled)

| WORD            | MSB<br>0 | 1          | 2      | 3 | 4 | 5   | 6    | 7   | 8                                       | 9   | А       | В        | С        | D          | Е    | LSB<br>F |
|-----------------|----------|------------|--------|---|---|-----|------|-----|-----------------------------------------|-----|---------|----------|----------|------------|------|----------|
| 01              |          | L (Length) |        |   |   |     | XI=0 | T=0 | Numbering System Identifier (NSI) LSB's |     |         |          |          |            |      |          |
| 01 <sub>h</sub> |          | L (        | Length | ) |   | UMI | XI=0 | T=1 |                                         | ISO | Applica | ation Fa | mily Ide | entifier ( | AFI) |          |

 Table 21 Description of the StoredPC word for Gen2 V1.X

| PARAMETER NAME | WRITE ACCESS |
|----------------|--------------|
| L              | Writeable    |
| UMI            | Writeable    |
| XI             | Fixed to 0   |
| Т              | Writeable    |
| AFI            | Writeable    |
| NSI            | Writeable    |

Table 22 Write access for Gen2 V1.X

#### 6.3.3. EPC/UII WORDS

EPC: Electronic Product code or

UII: Unique Item Identifier

Following ISO/IEC 18000-63 and EPC Gen2V2 specs.

#### 6.3.4. XPC\_W1

A description of the XPC\_W1 word is provided below.

| WORD | MSB<br>0 | 1 | 2 | 3 | 4  | 5 | 6 | 7  | 8       | 9       | А   | В  | С       | D | E  | LSB<br>F |
|------|----------|---|---|---|----|---|---|----|---------|---------|-----|----|---------|---|----|----------|
| 21h  | XEB      | 0 | 0 | 0 | SA | 0 | 0 | SN | В<br>=0 | C<br>=0 | SLI | ΤN | U<br>=0 | К | NR | Н        |

Table 23 Description of the XPC\_W1

| BIT NAME | DESCRIPTION                           | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XEB      | XPC_W2<br>indicator                   | 0: All bits of XPC_W2 are zero-valued<br>1: At least one bit of XPC_W2 is nonzero                                                                                                                                                                                                                                                                                                                      |
| SA       | Tamper Alarm<br>indicator             | 0: Tamper detection is not enabled or the Tag is not reporting a Tamper Alarm condition<br>1: Tag is reporting a Tamper Alarm condition                                                                                                                                                                                                                                                                |
| SN       | Snapshot Sensor<br>indicator          | 0: Chip version do not support Sensing Feature<br>1: Chip version support Sensing Feature<br>See Table 37.                                                                                                                                                                                                                                                                                             |
| В        | Battery assisted<br>passive indicator | Fixed to 0: Not supported by em aura-sense.                                                                                                                                                                                                                                                                                                                                                            |
| С        | Computed<br>response<br>indicator     | Fixed to 0: Not supported by em aura-sense                                                                                                                                                                                                                                                                                                                                                             |
| SLI      | SL-flag indicator                     | <ul> <li>0: indicates the SL flag is deasserted</li> <li>1: indicates the SL flag is asserted</li> <li>Upon receiving a <i>Query</i> the Tag maps its SL flag into the SLI and retains this SLI setting until starting a subsequent inventory round.</li> </ul>                                                                                                                                        |
| TN       | Tag-notification<br>indicator         | This bit is used to indicate the state of the TN function defined by the application.                                                                                                                                                                                                                                                                                                                  |
| U        | Untraceable<br>indicator              | Fixed to 0: Not supported by em aura-sense.                                                                                                                                                                                                                                                                                                                                                            |
| к        | Killable indicator                    | 0: indicates the tag is not killable<br>1: indicates the tag is killable using the Kill password<br>K = [(logical OR of all 32 bits of the kill password) OR (kill-pwd-read/write=0) OR (kill-<br>pwd-permalock=0)].<br>If any bits of the kill password are 1 then the Tag is killable<br>If kill-pwd-read/write is 0 then the Tag is killable<br>If kill-pwd-permalock is 0 then the Tag is killable |
| NR       | Nonremovable indicator                | <ul><li>0: indicates the Tag is removable</li><li>1: indicates the Tag is nonremovable.</li><li>This bit is default 0 unless changed by an Interrogator via a <i>Write</i> or <i>BlockWrite</i>.</li></ul>                                                                                                                                                                                             |
| Н        | Hazmat indicator                      | 0: indicates the Tag is not affixed to hazardous material<br>1: indicates the Tag is affixed to hazardous material.<br>The bit is default 0 unless changed by an Interrogator via a <i>Write</i> or <i>BlockWrite</i> .                                                                                                                                                                                |

Table 24 Description of the XPC\_W1 bits



#### 6.3.5. XPC\_W2

The XPC\_W2 reported content is defined as follows:

| WORD            | MSB<br>0 | 1       | 2        | 3   | 4 | 5          | 6 | 7 | 8 | 9 | А | В | С | D | Е | LSB<br>F |
|-----------------|----------|---------|----------|-----|---|------------|---|---|---|---|---|---|---|---|---|----------|
| 22 <sub>h</sub> | Se       | nsorTyp | be = 000 | 00h |   | SensorData |   |   |   |   |   |   |   |   |   |          |

Table 25 Description of the XPC\_W2

| FIELD NAME | DESCRIPTION             | COMMENT                                                                                                                                                                                                                                                    |
|------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SensorType | Type of reported sensor | Fixed to 0000 <sub>h</sub> : em aura-sense embed a Vendor Defined sensor                                                                                                                                                                                   |
| SensorData | Sensor Data reported    | <ul> <li>2-bit data type    10-bit data value as follows:</li> <li>002    11111111112 (error): Error cases are described in 5.1.2.</li> <li>112    10-bit signed integer: The sensor data (<i>SensingData</i>) is defined as described in 5.1.1</li> </ul> |

#### Table 26 Description of the XPC\_W2 fields

Once powered, XPC\_W2 will be always reported within ACK reply as long as any sensing acquisition request has been done.

Before any attempt to perform a sensor acquisition, XPC\_W2 will be read as 0000h and will not be reported within the ACK reply.

6.4. TID MEMORY BANK

TID memory is as defined in ISO/IEC 18000-63 and EPC Gen2V2 specs.

| WORD            | MSB<br>0                                                      | 1              | 2       | 3                  | 4                | 5 | 6    | 7        | 8        | 9      | А   | В       | с      | D     | E       | LSB<br>F |
|-----------------|---------------------------------------------------------------|----------------|---------|--------------------|------------------|---|------|----------|----------|--------|-----|---------|--------|-------|---------|----------|
| 00h             | ISO/IEC 15963 Allocation Class (= E2h) Tag MDID MSB's (= 80h) |                |         |                    |                  |   |      |          |          |        |     |         |        |       |         |          |
|                 | A peT                                                         | ו חוח <i>ו</i> | .SB's ( | – B <sub>b</sub> ) | Tag Model Number |   |      |          |          |        |     |         |        |       |         |          |
| 01h             | rugi                                                          |                | .003(   | - 01)              | Model C          |   |      |          |          |        |     |         |        | Opt   | Options |          |
|                 | 1                                                             | 0              | 1       | 1                  | 0                | 0 | 0    | 1        | 0        | 0      | 1   | 0       | 0      | 0     | see b   | below    |
| 02h             |                                                               |                |         |                    |                  |   |      | XTID (:  | = 2000h  | )      |     |         |        |       |         |          |
| 03 <sub>h</sub> |                                                               |                |         |                    |                  |   | IC S | erial Nu | Imber [4 | 47:32] |     |         |        |       |         |          |
| 03h             |                                                               |                |         | C                  | ) <b>0</b> h     |   |      |          |          |        | Cus | tomer N | lumber | [7:0] |         |          |
| 04 <sub>h</sub> |                                                               |                |         |                    |                  |   | IC S | erial Nu | imber [3 | 31:16] |     |         |        |       |         |          |
| 05h             | IC Serial Number [15:0]                                       |                |         |                    |                  |   |      |          |          |        |     |         |        |       |         |          |

#### Table 27 Description of the TID memory

#### **Options:**

| BIT<br>E | USER CONFIGURATION                                                                  |
|----------|-------------------------------------------------------------------------------------|
| 0        | Tag is not performing Tamper detection                                              |
| 1        | Tag is performing Tamper detection only on compatible tag version (see section 8.1) |

Note 11: this bit reflect chip configuration bit "Pad Mode [0]". See System Configuration Word 1.

#### Table 28 TID option - Tamper detection

| BIT<br>F | USER CONFIGURATION                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------|
| 0        | Tag is using standard PC Word definition : StoredPC and PacketPC are as defined in 6.3.2.1                                      |
| 1        | Tag is using Legacy PC Word definition : StoredPC and PacketPC are compatible with prior versions of Gen2 as defined in 6.3.2.2 |

Note 12: This bit reflect chip configuration bit "Legacy PC". See System Configuration Word 1. Table 29 TID option - Legacy PC

The 48-bit IC Serial Number used for the UHF TID. The 48-bit IC Serial Number is encoded with even parity. An Interrogator should calculate even parity with bitwise exclusive-OR as follows:

If P = 0 then the IC Serial Number is correct. If P = 1 then the IC Serial Number has an error in it.

# 6.5. USER MEMORY BANK

The User Memory Bank contains two segments: User memory and System memory. User memory, also known as File\_0, is as defined in ISO/IEC 18000-63 and EPC Gen2V2 specs.

#### 6.5.1. FILE\_0 MEMORY

File\_0 memory is containing 124 16-bits words addressed from  $00_h$  to  $7B_h$ . This memory section is accessible according to ISO/IEC 18000-63 and EPC Gen2V2 specs.

#### 6.5.2. SYSTEM MEMORY

#### 6.5.2.1. OVERVIEW

System memory consists of several 16-bits words addressed from 120<sub>h</sub> to 130<sub>h</sub> depending on Tag's feature. Write into System memory can be done using *Write* command or single block *BlockWrite* (ie. With <u>WordCount</u>=1<sub>h</sub>) command. Any access to the System Memory require the tag to be in Secured State. Any special access right are described in Table 30. All RFU bits are not writeable and will be read as zeroes.

The content of the System memory is described below:

| Logical<br>Address                     | Name               | Description                    | Access Right                                                                                                                                                                                         |  |  |  |  |  |
|----------------------------------------|--------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 120h                                   | SYS_CONF_W1        | System Configuration<br>Word 1 | Configuration Lock = '0' :<br>Read/Write allowed<br>Configuration Lock = '1' :<br>Read/Write cause error response from<br>the Tag.                                                                   |  |  |  |  |  |
| 121 <sub>h</sub>                       | SYS_TAMPER_LOCK    | Tamper Lock<br>Word            | Configuration Lock = '0'<br>OR Tamper feature <u>not</u> available :<br>Read/Write cause error response from<br>the Tag.<br>Configuration Lock = '1' :<br>Write allowed<br>Read as 0000 <sub>h</sub> |  |  |  |  |  |
| 122 <sub>h</sub>                       | SENSOR_CALIB       | Sensor Calibration<br>Word     | Calibration Lock = '0' :<br>Read/Write allowed<br>Calibration Lock = '1'<br>OR Sensor feature <u>not</u> available :<br>Read/Write cause error response from<br>the Tag.                             |  |  |  |  |  |
| 123 <sub>h</sub>                       | SENSOR_CTRL_W1     | Sensor Control<br>Word 1       | Sensor feature is available :<br>Read/Write allowed<br>Sensor feature <u>not</u> available :<br>Read/Write cause error response from<br>the Tag.                                                     |  |  |  |  |  |
| 124 <sub>h</sub>                       | SENSOR_DATA_STORED | Sensor Data Stored<br>Word     | Sensor feature is available :<br>Read only<br>Write cause error response from the Tag.<br>Sensor feature <u>not</u> available :<br>Read/Write cause error response from<br>the Tag.                  |  |  |  |  |  |
| 125 <sub>h</sub><br>- 12F <sub>h</sub> | RFU                | Reserved for Future Use        | Read/Write cause error response from the Tag.                                                                                                                                                        |  |  |  |  |  |
| 130h                                   | EXTPADCTRL_CONF    | Extended Pad Control<br>Word   | ExtPadCtrl Lock = '0' :<br>Write allowed<br>ExtPadCtrl Lock = '1'<br>OR Supply feature <u>not</u> available :<br>Read/Write cause error response from<br>the Tag.                                    |  |  |  |  |  |

Table 30 System memory register map



# 6.5.2.2. SYSTEM MEMORY REGISTERS DETAIL

| Word<br>120 <sub>h</sub> | MSB<br>0 | 1 | 2                | 3                | 4 | 5 | 6            | 7                                        | 8                               | 9                  | А           | В             | с | D | Е           | LSB<br>F |
|--------------------------|----------|---|------------------|------------------|---|---|--------------|------------------------------------------|---------------------------------|--------------------|-------------|---------------|---|---|-------------|----------|
| Description              | Pad mode |   | Legacy PC enable | Tannar filmrtion |   |   | IN Keporting | Access Password<br>Untraceable privilege | Access Password TN<br>privilege | Configuration Lock | Backscatter | configuration |   |   | Ъ<br>Г<br>Г |          |

| Content                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pad Mode                                    | Configures the non-antenna pads/pins<br>00 <sub>2</sub> : Disabled (HI-Z, HI-Z)<br>01 <sub>2</sub> : Tamper Loop (TAMPER IN, TAMPER OUT) with tamper sensed when loop is not intact (open)<br>10 <sub>2</sub> : Package Test (VSUP, VSS) NOTE : Switches to disabled (HI-Z, HI-Z) when Configuration Lock = 1.<br>11 <sub>2</sub> : Tamper Loop (TAMPER IN, TAMPER OUT) with tamper sensed when loop is intact (closed)<br>If chip does not support tamper see Table 37, Pad Mode should be set to 00 <sub>2</sub> |
| Legacy PC enable                            | <ul> <li>Selects the PC Word behavior</li> <li>0: Disabled = New PC Word (StoredPC, PacketPC) is as defined in Gen2V2.</li> <li>1: Enabled = Old PC Word (StoredPC, PacketPC) is compatible with prior versions of Gen2. All bits in the StoredPC are writeable except XI which is set = 0 regardless of the XPC_W1 and XPC_W2 values.</li> </ul>                                                                                                                                                                  |
| Tamper Function                             | Tamper detection can be used to modify the normal Tag behavior<br>$00_2$ : Tamper detection is reported but does not modify the normal Tag behavior<br>$01_2$ : Tamper detection disables Tag and if tamper detection was logged to NVM it kills the Tag<br>$10_2$ : RFU<br>$11_2$ : RFU<br>$11_2$ : RFU                                                                                                                                                                                                           |
| TN Reporting                                | 00 <sub>2</sub> : XPC_W1 TN bits is application defined and is writeable directly through <i>Write/BlockWrite</i> commands 01 <sub>2</sub> , 10 <sub>2</sub> , 11 <sub>2</sub> : XPC_W1 TN bit is used to report sensing detection as defined in section 5.6                                                                                                                                                                                                                                                       |
| Access Password<br>Untraceable<br>Privilege | Identifies if the Access Password has the Untraceable privilege. This privilege allows an Interrogator authenticated by a nonzero Access Password to use the <i>Untraceable</i> command and to read/write untraceably hidden memory 0: Access Password does not have the Untraceable privilege 1: Access Password does have the Untraceable privilege                                                                                                                                                              |
| Access Password<br>TN Privilege             | Identifies if the Access Password has the TN privilege. This privilege allows an Interrogator authenticated by a nonzero Access Password to set/clear the TN indicator bit in XPC_W1<br>0: Access Password does not have the TN privilege<br>1: Access Password does have the TN privilege                                                                                                                                                                                                                         |
| Configuration Lock                          | Locks System Configuration as described in 6.5.2.1<br>0: System Configuration Block 1 unlocked<br>1: System Configuration Block 1 locked                                                                                                                                                                                                                                                                                                                                                                           |
| Backscatter<br>configuration                | <ul> <li>em aura-sense features two levels of backscatter strengths. Per default, minimum backscatter strength is enabled in order to limit radiated emission power during the tag reply. To increase the read range reverse, max. backscatter strength can be turned on using following configuration bit:</li> <li>00<sub>2</sub>: RFU</li> <li>01<sub>2</sub>: RFU</li> <li>10<sub>2</sub>: Min. backscatter strength</li> <li>11<sub>2</sub>: Max. backscatter strength</li> </ul>                             |
| RFU                                         | Reserved for Future Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 31 Description of SYS\_CONF\_W1



#### Tamper Lock Word

| Word<br>121 <sub>h</sub> | MSB<br>0 | 1  | 2        | 3               | 4 | 5 | 6             | 7                  | 8                                        | 9    | A | В | С | D                   | Е  | LSB<br>F |
|--------------------------|----------|----|----------|-----------------|---|---|---------------|--------------------|------------------------------------------|------|---|---|---|---------------------|----|----------|
| Description              |          | Wr | rite any | Re<br>v value t |   |   | wed wi<br>Rea | hen Sy<br>d is alv | er Lock<br>stem C<br>vays 00<br>I enable | )00h |   |   |   | into N <sup>v</sup> | VМ |          |

| Content     | Description                                                                                                                                                                                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tamper Lock | Once Set,<br>Device is logging Tamper Alarm event into NVM without executing SensAtBoot, if enabled<br>The tamper alarm is logged only once in the NVM for the first tamper alarm event<br>This Lock is permanent and cannot be unset. |

#### Table 32 Description of SYS\_TAMPER\_LOCK

#### Sensor Calibration Word

| Word<br>122 <sub>h</sub> | MSB<br>0         | 1 | 2 | 3                  | 4 | 5 | 6 | 7 | 8 | 9 | А | В | С                | D | Е | LSB<br>F |
|--------------------------|------------------|---|---|--------------------|---|---|---|---|---|---|---|---|------------------|---|---|----------|
| Description              | Calibration Lock |   |   | Calibration Margin |   |   |   |   |   |   |   |   | Calibration Data |   |   |          |

| Content            | Description                                                                                                                                                                                                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration Lock   | Lock the calibration data<br>0: Unlocked – New Calibration Data can be stored.<br>1: Locked – The calibration Data cannot be changed.                                                                            |
| Calibration Margin | Define the margin to be applied for Sensing data reporting and Sensor Detection See 5.1 and 5.6<br>00000 <sub>2</sub> : Margin is 0<br>00001 <sub>2</sub> : Margin is 1<br><br>11111 <sub>2</sub> : Margin is 32 |
| RFU                | Reserved for Future Use                                                                                                                                                                                          |
| Calibration Data   | 8-bit positive value to be used as reference for Sensing Data reporting. See 5.1.1 Capacitive Measurement                                                                                                        |

Table 33 Description of SENSOR\_CALIB



#### Sensor Control Word 1

| Word<br>123 <sub>h</sub> | MSB<br>0 | 1                | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9   | А | В | С | D | E | LSB<br>F |
|--------------------------|----------|------------------|---|---|---|---|---|---|---|-----|---|---|---|---|---|----------|
| Description              |          | Sense At Control |   |   |   |   |   |   |   | RFU |   |   |   |   |   |          |

| Content          | Description                                                                                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------|
|                  | Enable the different option to trigger a sensor acquisition.                                                                 |
|                  | 000 <sub>2</sub> : No Sensing operation is enable                                                                            |
|                  | xx1 <sub>2</sub> : Sense At Boot is enabled as described in 5.1.3                                                            |
|                  | x1x <sub>2</sub> : Sense At Select is enabled as described in 5.1.4.1                                                        |
| Sense At Control | 1xx2: Sense At Write/BlockWrite is enabled as described in 5.1.4.2                                                           |
|                  | Note 1: "x" means "don't care".                                                                                              |
|                  | Note 2: Any combination of "Sense At Control" is allowed. E.g. Sense At Control = 011 <sub>2</sub> will enable Sense At Boot |
|                  | and Sense At Select operation,                                                                                               |
| RFU              | Reserved for Future Use                                                                                                      |

#### Table 34 Description of SENSOR\_CTRL\_W1

#### Sensor Data Stored

| Word<br>124 <sub>h</sub> | MSB<br>0 | 1  | 2   | 3 | 4 | 5    | 6 | 7 | 8 | 9 | Α | В                   | с | D | Е | LSB<br>F |
|--------------------------|----------|----|-----|---|---|------|---|---|---|---|---|---------------------|---|---|---|----------|
| Description              |          | 00 | 002 |   | ź | 1 12 |   |   |   |   |   | Stored Serisor Data |   |   |   |          |

| Content            | Description                                                                  |
|--------------------|------------------------------------------------------------------------------|
| Stored Sensor Data | 10-bit signed integer stored during Sense and Store operation (see Table 12) |
|                    | Table 35 Description of SENSOR_DATA_STORED                                   |



Extended Pad Control Word

| Word<br>130 <sub>h</sub> | MSB<br>0 | 1 | 2 | 3   | 4 | 5 | 6 | 7               | 8 | 9                     | А | В                         | С                    | D                        | Е | LSB<br>F |
|--------------------------|----------|---|---|-----|---|---|---|-----------------|---|-----------------------|---|---------------------------|----------------------|--------------------------|---|----------|
| Description              |          |   |   | RFU |   |   |   | ExtPadCtrl Lock |   | ExtPadCtrl At Control |   | ExtPadCtrl Switch<br>Mode | ExtPadCtrl Off State | ExtPadCtrl Active<br>Pad | Ĩ | ХF С     |

| Content                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ExtPadCtrl Lock           | Lock the Extended Pad Control Features :<br>0: Configuration of Extended Pad Control Features is unlocked<br>1: Configuration of Extended Pad Control Features is locked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ExtPadCtrl At<br>Control  | Define the ON state condition for Extended Pad Control Features :<br>0xx <sub>2</sub> : <i>AlwaysOff</i> : The Supply&Switch functionality is always OFF as described in 5.3.2.1<br>100 <sub>2</sub> : <i>AlwaysOn</i> : The Supply&Switch functionality is ON when tag is powered by UHF wave as described in 5.3.2.2<br>101 <sub>2</sub> : <i>InInventoryRound</i> : The Supply&Switch functionality is ON when it is participating in the current inventory round<br>meaning the device state is Arbitrate, Reply, Acknowledged, Open, or Secured as described in 5.3.2.3<br>110 <sub>2</sub> : <i>Singulated</i> : The Supply&Switch functionality is ON when it is singulated meaning the device state is<br>Acknowledged, Open, or Secured as described in 5.3.2.4<br>111 <sub>2</sub> : <i>Selected</i> : The Supply&Switch functionality is ON when it is selected meaning the Select Flag (SL) is set as<br>described in 5.3.2.5 |
| ExtPadCtrl Switch<br>Mode | Enable Switch mode :<br>0: Pad Ctrl in supply mode<br>1: Pad Ctrl in switch mode – Both pads will be connected to same reference when ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ExtPadCtrl OFF<br>State   | Define Pad OFF state :<br>0: Pad is in High-Z (floating)<br>1: Pads are reverted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ExtPadCtrl Active<br>Pad  | Define which Pad is the active one :<br>0: Active Pad is SWITCH1<br>1: Active Pad is SWITCH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RFU                       | Reserved for Future Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Table 36 Description of EXTPADCTRL\_CONF

em microelectronic

# PRODUCT LIFE CYCLE IC Serial Number is written and permalocked All other memory is unlocked and writeable EPC/UII memory is 8 blocks Legacy PC format is disabled Tamper detection feature is disabled Disabled (ULZ, ULZ)

- nitialization
   Disabled (HI-Z, HI-Z)
   Access Password does not have the Untraceable nor TN privilege
   XPC\_W1 TN bit is application defined and is writeable directly through Write/BlockWrite commands
   System Configuration Block 1 unlocked
   Sensing is not activated by default
   calibration data is Unlocked
- Inlay configuration is performed using the air interface:

   User specifies if Legacy PC format is enabled/disabled
   User specifies if tamper detection feature is enabled/disabled, the tamper loop polarity, and the corresponding tamper functionality
   User specifies if the Access Password privilege for Untraceable or TN privilege
   User specifies "Sense At Control" or "Extended Pad Control"
   User specifies Tag notification and Error reporting if applicable
   Configuration lock when appropriate
   Tamper detection feature, if enabled, is tested and then activated for logging into NVM

# ↓

| Tag/Label<br>Personalization | <ul> <li>Tag/Label personalization (a.k.a. encoding) is performed:         <ul> <li>Write application data to EPC/UII memory and, User memory,</li> <li>Permalock application data as appropriate</li> </ul> </li> <li>Password insertion is performed using the air interface:         <ul> <li>Insert Access Password and Kill Password into memory and permalock</li> </ul> </li> </ul> |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ų                            |                                                                                                                                                                                                                                                                                                                                                                                            |

# Application specific product configuration is performed and permalocked if applicable using the air interface: User specifies if tamper detection feature is enabled/disabled, the tamper loop polarity, and the corresponding tamper functionality User specifies "Sense At Control" when appropriate Tamper detection feature, if enabled, is tested and then activated for logging into NVM Calibration: User performs a calibration using calibration command as described in Table 12 or by writing in the Calibration or leaves the calibration unlocked

Ţ

| Application                 | <ul> <li>Operations performed as needed for the application(s) which might include any combination<br/>of the following:</li> </ul>                                                                                                                                                                                                                                                                       |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (End Users or<br>Consumers) | <ul> <li>Inventory Tag using EPC/UII, or TID</li> <li>Read/Write application data to/from EPC/UII memory, User memory</li> <li>Enable/disable privacy features</li> <li>Drive the pads using Supply&amp;Switch function</li> <li>Set/clear TN indicator flag</li> <li>Trigger sensing acquisition</li> <li>Read/store sensing data</li> <li>Tamper detection, if enabled</li> <li>Kill the Tag</li> </ul> |  |  |  |  |

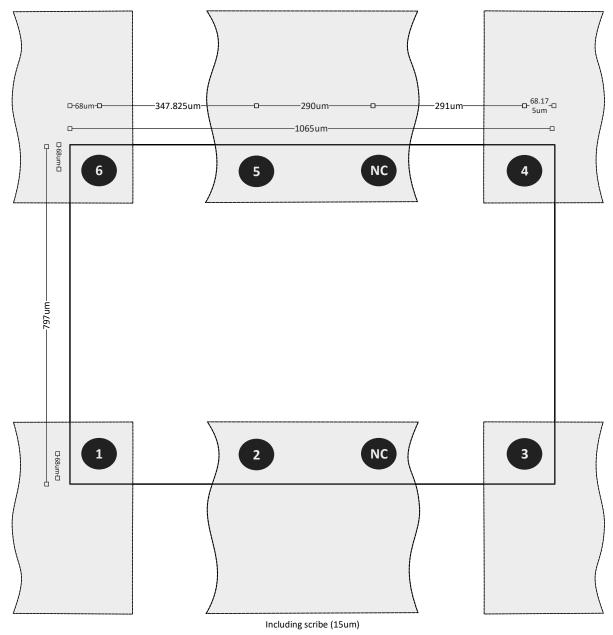
# 8. DELIVERY INFORMATION

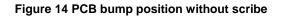
# 8.1. ORDERING INFORMATION

| Part Nb        | Package form                                                          | Delivery<br>form | Description                                                                                                              | Sensing      | Tamper       | Supply<br>&Switch |
|----------------|-----------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|
| EM4152V001WS6U | Sawn wafer /<br>Gold bumped +<br>PI : wafer<br>thickness of 6<br>mils | Sawn wafer       | Standard version programmed<br>for capacitive sensing delivery<br>wafer in Gold bump <sup>13)</sup>                      | $\checkmark$ | $\checkmark$ |                   |
| EM4152V002WS6U | Sawn wafer /<br>Gold bumped +<br>PI : wafer<br>thickness of 6<br>mils | Sawn wafer       | Standard version programmed<br>for external supply and switch<br>functions delivery wafer in<br>Gold bump <sup>13)</sup> |              |              | $\checkmark$      |
| EM4152V003WS6U | Sawn wafer /<br>Gold bumped +<br>PI : wafer<br>thickness of 6<br>mils | Sawn wafer       | Standard version programmed<br>for UHF and tamper delivery<br>wafer in Gold bump <sup>13)</sup>                          |              | $\checkmark$ |                   |

Note 13: standard IC version delivered with gold bumps. Other bumping technologies under discussion Table 37 Ordering Information

For other delivery formats please contact EM Microelectronics representative


# 8.2. BUMPED BARE DIE PIN DESCRIPTION


| NAME                   | I/O TYPE                                                              | DESCRIPTION                                                                                                                                     |
|------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| A-                     | RF                                                                    | antenna terminal                                                                                                                                |
| TAMPER_OUT/<br>SWITCH2 | analog                                                                | Tamper pad: connected to the tamper loop<br>SWITCH2: connected to the external device for Supply&Switch function<br>Unused in application: HI-Z |
| CAP+                   | analog                                                                | Connection pad to the sensor                                                                                                                    |
| CAP-                   | analog                                                                | Connection pad to the sensor                                                                                                                    |
| TAMPER_IN/<br>SWITCH1  | analog                                                                | Tamper pad: connected to the tamper loop<br>SWITCH1: connected to the external device for Supply&Switch function<br>Unused in application: HI-Z |
| A+                     | RF                                                                    | antenna terminal                                                                                                                                |
|                        | A-<br>TAMPER_OUT/<br>SWITCH2<br>CAP+<br>CAP-<br>TAMPER_IN/<br>SWITCH1 | A-RFTAMPER_OUT/<br>SWITCH2analogCAP+analogCAP-analogTAMPER_IN/<br>SWITCH1analog                                                                 |

**Table 38 Pin-out description** 



# 8.3. BARE DIE BUMP LOCATION





Note 14: Bump dimension is 71um Note 15: NC i.e. Non Connected bumps can be connected to neighboring bumps

# 9. HANDLING PROCEDURES

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. Unused inputs must always be tied to a defined logic voltage level.

EM Microelectronic-Marin SA ("EM") makes no warranties for the use of EM products, other than those expressly contained in EM's applicable General Terms of Sale, located at http://www.emmicroelectronic.com. EM assumes no responsibility for any errors which may have crept into this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein.

No licenses to patents or other intellectual property rights of EM are granted in connection with the sale of EM products, neither expressly nor implicitly.

In respect of the intended use of EM products by customer, customer is solely responsible for observing existing patents and other intellectual property rights of third parties and for obtaining, as the case may be, the necessary licenses.

Important note: The use of EM products as components in medical devices and/or medical applications, including but not limited to, safety and life supporting systems, where malfunction of such EM products might result in damage to and/or injury or death of persons is expressly prohibited, as EM products are neither destined nor qualified for use as components in such medical devices and/or medical applications. The prohibited use of EM products in such medical devices and/or medical applications is exclusively at the risk of the customer.