

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

EM66xx 4-bit Micro
controller family

Contents of this binder :

 Development System Manual

 Peripheral Interface Modules Manual

 LCD Editor Module Manual

 MFP Programming Interface Manual

 Version 4.5, October 2005

EM MICROELECTRONIC - MARIN SA

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

EM MICROELECTRONIC - MARIN SA

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

EM MICROELECTRONIC - MARIN SA

EM66xx Microcontroller

Development System Manual

 Software Development System

 EM66xx Programming Model

 EM66xx Instruction Set

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

Table of Contents

1. EM66XX MICROCONTROLLER DEVELOPMENT SYSTEM.............................1

2. SOFTWARE DEVELOPMENT SYSTEM...2

2.1. SYSTEM REQUIREMENTS ...2
2.2. INSTALLATION ...3
2.3. DEVELOPING AN EM66XX APPLICATION ..5
2.4. THE PROJECT MENU ..7

2.4.1. New.. 8
2.4.2. Open .. 8
2.4.3. Edit ... 8
2.4.4. Save and Save As ... 8
2.4.5. Close .. 8

2.5. THE FILE MENU...9
2.5.1. New.. 9
2.5.2. New Template.. 9
2.5.3. Open .. 9
2.5.4. Save ... 9
2.5.5. Save As.. 10
2.5.6. Close .. 10
2.5.7. Print.. 10
2.5.8. Exit ... 10

2.6. EDIT MENU ...10
2.6.1. Cut.. 10
2.6.2. Copy... 10
2.6.3. Paste .. 10
2.6.4. Delete... 11
2.6.5. Select All .. 11
2.6.6. Time Date... 11
2.6.7. Font .. 11

2.7. SEARCH MENU..11
2.8. BUILD...11

2.8.1. Build Project ... 11
2.8.2. Assemble ... 11
2.8.3. Disassembly... 13

2.9. EMULATION...14
2.9.1. Emulator Control Window .. 15

2.9.1.1. Execution toolbar... 16
2.9.1.1.1. Connect/Disconnect Button (ICE ONLY) ... 16
2.9.1.1.2.

 Load a binary file into the emulator control window 16
2.9.1.1.3. Download program to emulator (ICE ONLY)... 16
2.9.1.1.4. Reset Execution Button ... 17
2.9.1.1.5. Continue Button ... 17
2.9.1.1.6. Stop Button .. 17
2.9.1.1.7. Step Button .. 17
2.9.1.1.8. Animation Button.. 17

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

2.9.1.1.9. Instruction Break Enable Button. ... 17
2.9.1.1.10. Data Break Enable Button ... 18
2.9.1.1.11. Trace Enable Button .. 18
2.9.1.1.12. Step Interrupt Enable Button. .. 18

2.9.1.1.13. Break Status... 19
2.9.1.1.14. Run status ... 19

2.9.1.2. Microcontroller state Panel .. 19
2.9.1.2.1. PC selection and value ... 19
2.9.1.2.2. Accumulator value... 19
2.9.1.2.3. microcontroller state flags .. 19
2.9.1.2.4. Index value .. 19

2.9.1.3. Source Code Buffer ... 20
2.9.1.3.1. Source code data .. 20
2.9.1.3.2. Activating / Deactivating Instruction Breakpoints .. 21
2.9.1.3.3. Defining Code to be Traced .. 22

2.9.2. Emulator RAM Window.. 23
2.9.3. Emulator Watch Window.. 24

2.9.3.1. The Watch Table ... 25
2.9.3.2. Adding or deleting Variables in the Watch Table .. 25
2.9.3.3. Modifying Variables in the Watch Table .. 25
2.9.3.4. Setting Data Breakpoints... 26

2.9.4. Emulator Trace Window... 27
2.9.5. VICE IO Window .. 29
2.9.6. In-circuit Emulator Communication Configuration ... 30

2.9.6.1. COM Port... 30
2.9.6.2. Baud Rate.. 30
2.9.6.3. DTR CTS RTS DSR .. 30
2.9.6.4. Buffered ... 30
2.9.6.5. OK button... 30
2.9.6.6. Cancel Button .. 30
2.9.6.7. Reset Button .. 31

2.9.7. MTP Interface .. 31

3. EM66XX PROGRAMMING MODEL ..32

3.1. GLOBAL ARCHITECTURE ..32
3.1.1. Instruction Register .. 33
3.1.2. Control Unit .. 33
3.1.3. Program Counter (PC) ... 33
3.1.4. Stack Pointer (SP) ... 33
3.1.5. Accumulator (Accu).. 33
3.1.6. Status Register .. 33
3.1.7. Index Registers .. 33
3.1.8. Interrupts .. 33

3.2. INSTRUCTION SET ...35
3.2.1. General and Program Flow Control Instructions ... 35
3.2.2. Register (RAM) Load and Store Operations.. 36

3.2.2.1. Direct load and store operations ... 36
3.2.2.2. Indexed load and store operations .. 36

3.2.3. Binary Operations .. 37
3.2.3.1. Shift left .. 37
3.2.3.2. Shift right.. 38
3.2.3.3. Direct binary operations... 38
3.2.3.4. Direct binary operations with shift right ... 39
3.2.3.5. Indexed binary operations ... 39

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

3.2.3.6. Indexed binary operations with shift right .. 39
3.2.4. Arithmetic Operations .. 40

3.2.4.1. Direct arithmetic operations... 40
3.2.4.2. Direct arithmetic operations with shift right.. 41
3.2.4.3. Indexed arithmetic operations ... 41
3.2.4.4. Indexed arithmetic operations with shift right .. 41

3.2.5. Binary representation of Instruction set ... 42

4. EM66XX ASSEMBLER SYNTAX ..44

4.1. INTRODUCTION..44
4.2. INSTRUCTION SYNTAX BASICS ..44
4.3. GENERAL STATEMENT RULES ..45
4.4. EMBEDDED DOCUMENTATION...46
4.5. SYMBOL SYNTAX RULES ..46
4.6. CONSTANT SYNTAX ...47
4.7. EXPRESSION SYNTAX ..48
4.8. ASSEMBLER DIRECTIVES..50

4.8.1. ENDM ENDMACRO MACEND.. 50
4.8.2. EQU ... 50
4.8.3. INCLUDE ... 50
4.8.4. MACRO.. 51
4.8.5. ORG... 51

4.9. MACRO DEFINITIONS ...52
4.10. ASSEMBLER ERROR MESSAGES..54

5. MASK ROM ...55

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA www.emmicroelectronic.com

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 1 www.emmicroelectronic.com

1. EM66xx Microcontroller Development System
The EM66xx microcontroller development system is a set of software and hardware
tools used for the development of applications for the EM66xx family of 4 bit
microcontrollers from EM Microelectronic Marin SA.

The development system is composed of a PC based software and a universal in-
circuit emulator. The development system software offers a complete integrated
working environment allowing project definition, editing, assembly, software
simulation and connection to an universal in-circuit emulator for in-circuit testing.

The hardware emulation of the complete family of 4 bit microcontrollers is achieved
with a configurable universal in-circuit emulator.

This document describes the installation and utilisation of the software tools.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 2 www.emmicroelectronic.com

2. Software Development System

2.1. System Requirements
The EM66xx 4-bit microcontroller development system requires the following
minimum requirement:

• A PC with an 80486 or higher processor, running Microsoft Windows 98, ME, XP,
Windows NT4.0 or 2000.

• A VGA monitor (SVGA recommended)

• A Hard disk with at least 4MBytes of free space

• 16 megabytes of available memory (32 megabytes or higher is strongly
recommended).

• A serial port capable of communication at 9600 or 19200 baud (for connection of
the universal in-circuit emulator).

• A CD-ROM drives for the installation of the software development system.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 3 www.emmicroelectronic.com

2.2. Installation
To install the EM66xx software development system:

1. Insert the CD-ROM into your CD drive.

2. Wait a few moments for the autorun facility to activate.

3. Select "Dev. System 4-bits"

4. Follow the on-screen instructions to install the software.

During the installation process the following files will be copied to the target directory
specified by the user :

• EMMON.EXE :The core of the development system
• EMMON.INI : The development system initialisation file
• V66xxASM.EXE : The assembler module.
• V66xxDIS.DLL : Disassembler functions
• INSTRUCT.INI : The instruction definition file
• CONDIREC.INI : Conditional directive definition files
• DIRECTIV.INI : Directive definition
• OPERATOR.INI : Operator definitions
• ERRORMSG.INI : Error message definitions
• LCDEDIT.EXE : LCD Editor main programm
• STDV66xx.DLL : The standard interface for the software simulation
• 66xx_LCD.DLL : LCD simulation module
• 66xxxxxxx.DLL : Peripheral definition modules (one per simulated controller)
• others

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 4 www.emmicroelectronic.com

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 5 www.emmicroelectronic.com

2.3. Developing an EM66xx Application
This chapter describes in a general manner the development of an application using
the EM66xx software development system. The development system is a totally
integrated environment you can use to develop your applications for the whole
EM66xx family of microcontrollers. The software development system is comprised
of a project window, a text editor, an assembler a disassembler and a software
simulator, which also serves as, interface to the universal in-circuit emulator.

The development process can be broken down into two stages: creating the
application and developing the application. The first step, creating an application,
comprises the creation of a project definition file, which defines the project
parameters. Projects refer to the source file(s) which make up the application as well
as the definition of the target controller of the application to be used during the
simulation / emulation process. The way in which the project definition interacts with
the development process is summarised below.

Fig. 1 EM66xx Development system structure

By using a project definition file it is possible to select once the global parameters
which will then be used by the development system.

Once the project has been defined the source files can then be created. The source
files used by the EM66xx development system are text files, which by default have
the extension ASM. They can created and edited with the editor incorporated the
development system or they can be edited with any external text editor. The use of
the internal editor has the advantage that there is an interaction between the
assembler output window and the text editor. This interaction allows very rapid error

Project Definition
(*.PRJ)

Main Assembly source file
Target controller

Main Source File

(*.ASM)

Include files

(registers / constants / library)

EM66xx Assembler Module

VICE / ICE

Emulation

Binary File

(*.BIN)

List File

(*.PRN)

Symbol reference file

(*.SYM)

Assembly Errors

(*.ERR)

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 6 www.emmicroelectronic.com

analysis since the software engineer can directly go to the source line which created
the assembly error by double clicking on the error message. The development
system allows several documents to be open at the save time. The maximum
number of documents open is determined by the memory size of the system,
however, at present each source file is limited to a maximum size of 32Kbytes. The
internal editor supports fully the cut and paste options of windows.

The structure of a generic EM66xx assembler program is shown below. In the
following example the naming convention used for the program labels is not
obligatory but simply represents the function of the program block.

; GENERIC.ASM
 ;--
 ; Register definition include files user defined and / or
 ; controller dependent
 ;--
 INCLUDE EM66xxREG.ASM ; Include register definitions

ZERO EQU 00H ;--
MAX EQU 0FH ; Definitions of constants
 ;--

 ;--
 ; Definitions of variables
 ;--
RAM0 EQU 00H ; min RAM
RAMMAX EQU 05FH ; max. RAM

 ;--
 ; Definition of the program counter value
 ;--
 ORG 0H ; the following code is based at address 0

 ;--
 ; Assembler program body
 ;--

RESET: JMP MAIN ; Boot address - jump to core of program
 ;--
 ; INTERRUPT HANDLER STARTS HERE
 ;--
HANDLER:
 STA RAM0 ; save the value of the accumulator at
 ; the start of the interrupt routine

 LDR RAM0 ; restore Accu before leaving interrupt handler
 RTI ;--
 ; End of Interrupt Handler
 ;--
 ;--
 ; Main program core
 ;--
MAIN:

 INCLUDE APPLISUB.ASM ; Include sub routines (possibly library modules)

 ;--
 END ; signifies the end of the source code any code placed
 ; after this directive will be ignored
 ;--

Fig. 2 EM66xx Generic Program structure

Once the application is assembled without errors it can be tested. This can be done
either using the software simulator or the universal in-circuit emulator. Both systems
are operated from an identical interface and provide the following development tools.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 7 www.emmicroelectronic.com

• Source level debugging of the application.

• Instruction break selection without reassembly.

• Conditional data break selection without reassembly.

• Instruction tracing (including source code)

• Variable watch functions.

All the debugging functions such as instruction breakpoints, instruction traces and
conditional data breaks can be modified without the reassembly of the application.

2.4. The Project menu
The definition of new projects and the opening of existing projects is achieved from
the « project » option of the main menu bar which is shown below.

 Fig. 3 Project Menu

At the bottom of the project menu are the four most recent projects opened in the
development system. If the desired project is in this list it can be reloaded by
selecting it from this list. The other options in the project menu are the following:

When starting a new project, first create your main assembler source file (see 2.5),
then create your new project (see 2.4.1)

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 8 www.emmicroelectronic.com

2.4.1. New
This option opens the dialogue box shown below enabling the definition of the new
project parameters. The main assembler source file must be created before this
operation (see chapter 2.5).

Fig. 4 Project definition window

In the field « Main Source File » the complete name (path and filename) of the main
source file of the project should be entered. The main file can also be selected by
using the « Browse » button. This button opens a dialogue box that enables the
selection of the file. The field « Target System » is a drop down selection box which
allows the selection of the target controller. The number of target controllers defined
in the system is dependent on external configuration modules which are dynamically
linked to the application at execution time. In this way the development system can
be updated for new controller by just adding the new controller configuration file. It
should be noted that a project is not automatically saved to permanent storage when
it is created. This should be performed using the « Save » or « Save As » options of
the project menu described below.

2.4.2. Open
This option opens a dialogue box which allows an existing project to be opened. If a
project is already open it is automatically closed before the new project configuration
is loaded.

2.4.3. Edit
This option opens the dialogue box which allows the modification of the project
parameters (as described in section 2.4.1).

2.4.4. Save and Save As
These two options allow the current project definition to be saved to permanent
storage.

2.4.5. Close
This option closes the current project definition without saving the changes.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 9 www.emmicroelectronic.com

2.5. The File Menu
The menu options used for manipulation of the source files are found in the « File »
option of the main menu bar, which is shown below. The four most recent source
files are shown at the bottom of the file menu allowing them to be quickly reopened.

Fig. 5 File Menu

2.5.1. New
Creates a new source file. The document remains unnamed until it is saved, This
option is also available with the button in the application toolbar.

2.5.2. New Template
Used to create a new assembler file from a basic skeleton, The document must be
renamed when it’s saved.

2.5.3. Open
Open an existing source file. This option is also available with the button in the
application toolbar.

2.5.4. Save
Save the currently active source file to permanent storage. If the document is
unnamed the menu option « Save As » is automatically invoked. This option is only
available when a source file is open and is the active window.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 10 www.emmicroelectronic.com

2.5.5. Save As
Save an unnamed document to permanent storage, or save an existing document
under a new name. This option is only available when a source file is open and is the
active window.

2.5.6. Close
Close the active document. This option is only available when a source file is open
and is the active window.

2.5.7. Print
Prints the current source file to the default system printer.

2.5.8. Exit
Allows the user to quit the development system.

2.6. Edit Menu
The edit menu contains the options related to the cut and paste functions as well as
the definition of the fonts for the different types of windows.

Fig. 6 Edit Menu

2.6.1. Cut
Cuts the selected text from the current editor window to the clipboard.

2.6.2. Copy
Copies the selected text from the current editor window to the clipboard.

2.6.3. Paste
Insert the clipboard contents into the current editor document at the cursor position.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 11 www.emmicroelectronic.com

2.6.4. Delete
Delete the selected text from the current editor window.

2.6.5. Select All
Selects the complete contents of the current editor window.

2.6.6. Time Date
Insert the time and date at the cursor position in the active editor window.

2.6.7. Font
Select the font type and size for the active window. This option applies to the editor
window, the trace buffer window, the emulator control window and the emulator
watch window. For the editor it is not possible to individually set the font type for
each document and the current selection will be applied to all the text editor
windows.

2.7. Search Menu
This menu is only active when an editor window is active. It allows the searching of a
text string in the current editor window.

2.8. Build
The build menu contains the options which allows the assembly of an existing source
file as well as the disassembly of a binary file generated by the development system.

Fig. 7 Build options menu

2.8.1. Build Project
This option builds the current project without prompting for the name of the file to
assemble.

2.8.2. Assemble
Assembly of a program is achieved using the « Assemble » option of the menu.
Once this option is selected a dialogue box is opened requesting the name of the file

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 12 www.emmicroelectronic.com

to be assembled. By default the main source file as defined in the current project is
proposed. However, it is possible to override the project definition and assemble any
source file. Once the file is selected Assembly is started with the « OK » button. The
assembly is performed as a background task with the assembler generated
messages shown in the output window. An example of the result of an assembly is
shown in Fig. 8.

In this example 1 error message was generated. The error was number 200
(undefined variable or constant) and was generated in line 111 of the source file
« 6622DEMO.ASM ». To edit the source file which generated the error double click on the
error definition in the output window. If the source file is already open the cursor is
positioned to the line which generated the error. If the source file is not open it is
automatically loaded into an editor window and then the cursor is automatically
positioned to the line, which generated the error.

Fig. 8 EM66xx Assembly error output

If no assembly errors are encountered, then the last line printed on the output
window will be « Prog-Size = » telling the user the length of his program (in Nr.
of Instructions).

Very Important : the maximum user program size should be at least 5 words
smaller then the ROM size of the used μC ; the 5 last adresses have to be used by
EM- Marin for testing purposes. For The EM668x a minimum of 37 words must be
free to place some basic manufacturing test routine.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 13 www.emmicroelectronic.com

2.8.3. Disassembly
The option disassembly uses a binary file generated by the assembler to regenerate
an assembler source file (ASM file), a list file (PRT file), a variable list file (SYM file),
a cross reference file (XRF file) as well as a ROM state file (STA file). The source file
generated can be modified and reassembled in the same way as a normal source
file. The list file and the variable list file have the same format as those generated by
the assembler and can be reused in the simulator and emulator. The cross reference
file gives the line number for each variable and label referenced.

Fig. 9 Disassembly options

The file names are dependent on the active project. If no project is defined the
filenames must be entered. The generation of each data file can be activated or
deactivated by using corresponding the check box. The browse button opens a
standard dialogue box which allows the user to select the required file. The
disassemble process is initiated with the Disassemble button. Once the process is
terminated the button Annuler allows the user to quit the disassembler option box.

WARNING : If a source file is selected it will automatically be overwritten
during the disassembly process.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 14 www.emmicroelectronic.com

2.9. Emulation
It is possible to emulate EM66xx microcontroller programs in two ways. The first is
by a procedure referred to VIRTUAL EMULATION (VICE), where all the functions of the
microcontroller are simulated by a software module. The second is referred to as IN-
CIRCUIT EMULATION (ICE) and uses a configurable universal in-circuit emulator. In
both cases the emulator interface is practically the same, offering the following
features :

• Source level debugging

• Data watch and data breakpoint functions

• Instruction breakpoints

• Instruction trace functions

• Trace break functions
The user interface with the ICE and VICE emulators is composed of four windows
and is shown below.

Fig. 10 The EM66xx Development system emulator interface

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 15 www.emmicroelectronic.com

The most important window is the emulator control window. In this window the
source code is loaded and executed, instruction breakpoints can be set, trace points
can be set. The second window is the Watch window which contains a list of the
symbol definitions, the currently watched variables as well as the conditional break
points. The third window is the trace buffer window, and is only activated if the trace
enable button is activated. This window displays the contents of the trace buffer and
allows the printing of the contents. A forth window is also active if the VICE system is
running. This window is a virtual representation of the micocontroller IO ports. The
developer can see the state of the output ports as well as modify the state of the
input ports. This section of the interface is dependent on the type of microcontroller
defined in the project definition and consequently is not described here. For a more
detailed definition see the manual corresponding to the microcontroller being
emulated.

2.9.1. Emulator Control Window
The virtual emulator as well as the in-circuit emulator are both controlled from the
same interface. Consequently it is only possible to work with one system at a time.
The VICE / ICE control window is shown below.

Fig. 11 The emulator control window

The control window is composed of three sections, the execution toolbar (A), the
microcontroller status panel (B) and the source code buffer (C).

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 16 www.emmicroelectronic.com

2.9.1.1.Execution toolbar

Fig. 12 The emulator control bar

The execution toolbar contains all the buttons necessary for the control of the VICE /
ICE as well as showing the VICE / ICE break states.

2.9.1.1.1. Connect/Disconnect Button (ICE ONLY)
This button shows the state of the connection between the emulator control window
and the in-circuit emulator. When the in-circuit interface is selected the control
window tries to connect itself to the in-circuit emulator using the communication
parameters specified in the ICE config menu options. If it does not succeed, the
control window remains unconnected. The user can connect and disconnect the
Monitor by clicking on this button. This button is not available during virtual
emulation.

2.9.1.1.2. Load a binary file into the emulator control window
This button opens a dialogue box which allows the user to select the binary file which
will be loaded into the emulator control panel. By default the binary is that defined in
the project definition file. However, it is possible to override this selection and load
any binary file which has been assembled using the EM66xx assembler. Once the
binary file is selected the source code buffer of the controlled is filled with the
corresponding source of the binary file. It should be noted that every time a program
is reassembled it should be reloaded into the emulator control window before the
program changes take effect.

2.9.1.1.3. Download program to emulator (ICE ONLY)
This button downloads the source code buffer in to the in-circuit emulator. It also
sets any breakpoints or trace points set by the programmer. It should be noted that
every time a new or modified program is loaded into the emulator control window
source buffer it must be downloaded into the in-circuit emulator before any
modifications will take affect. The down loading of a program does not reset the state
of the emulator. Consequently it is necessary to reset the program with the « Reset
Execution Button » if the program is to be restarted.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 17 www.emmicroelectronic.com

2.9.1.1.4. Reset Execution Button
The meaning of this button depends on the working mode (VICE or ICE) as follows :

in VICE-mode : it produces a general RESET (cold reset), that is, all registers are
reset to initial values and the RAM is zeroed.

In ICE-mode : it only produces a program reset (warm reset), that is, only stack
pointer, program counters, index registers are initialized.

2.9.1.1.5. Continue Button
When the emulator has suspended its execution, this button restarts the program
execution at the address pointed to by the active PC.

2.9.1.1.6. Stop Button
When the emulator is running, this button enables the user to suspend the execution
of the application program. The emulator stops execution before the instruction
pointed to by the active PC.

2.9.1.1.7. Step Button
When the emulator has suspended its execution, this button enables the user to
execute a single instruction. The instruction is that pointed to by the active program
counter.

2.9.1.1.8. Animation Button
When the Emulator has suspended its execution, this button enables the user to
activate the animation mode of the emulator. In this mode 1 instruction is executed
every 1 second until the mode is deactivated with the stop button. Animation starts at
the instruction pointed to by the active program counter.

2.9.1.1.9. Instruction Break Enable Button.

This button
l b ll

 Instruction Break Enabled

 Instruction Break Disabled

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 18 www.emmicroelectronic.com

2.9.1.1.10. Data Break Enable Button
This button globally enables or disables the break condition on memory access.
When this function is enabled each memory access is evaluated for a break
condition (for a description of data breakpoint definition see the section « Watch
window »). The emulator breaks AFTER execution of the instruction which
performed the memory access. If this button is disabled then no data breakpoint
evaluation will be performed.

Button State

 Data Break Enabled

 Data Break Disabled

2.9.1.1.11. Trace Enable Button
This button globally enables or disables the trace mode.

Note : only after enabling the trace mode for the first time (after starting a debugging
session) the Trace-Window will be opened and initialized ; subsequent disablings will
not close this window, but will only disable instruction tracing

Button State

 Trace Enabled

 Trace Disabled

2.9.1.1.12. Step Interrupt Enable Button.
This button enables or disables the interruption during a STEP of execution. This
enables the user to execute the main procedure of an application program when the
emulator is still receiving interrupt signal.

Button State

 Interruption enabled during a STEP

 Interruption disabled during a STEP

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 19 www.emmicroelectronic.com

2.9.1.1.13. Break Status
These markers indicates the current break condition. « I » means an instruction
break is active, « D » means a data break is active and « T » means a trace break is
active.

I Instruction Break Flag Break

D Data Break Condition

T Trace Break Condition

2.9.1.1.14.Run status
This symbol indicates when the emulator is executing an application program (RUN)
or is stopped (STOP).

2.9.1.2.Microcontroller state Panel

Fig. 13 State of the microcontroller core

2.9.1.2.1.PC selection and value
When the Emulator has suspended its execution, the value of the current PC is
shown in red. The user can select the current PC (Program Counter) thanks to the
Option button and modify the value of the PC directly in the text box. The PC’s can
take value from 0 to FFF

2.9.1.2.2.Accumulator value
When the Emulator has suspended its execution, the current value of the Accu is
shown. The user can modify the value of the Accumulator. The accumulator can
take value from 0 to F.

2.9.1.2.3.microcontroller state flags
When the Emulator has suspended its execution, the user can modify the state of
the Z, Cy and Cy_int flags.

2.9.1.2.4.Index value
When the Emulator has suspended its execution, the user can modify the value of
the index registers. The index can take value from 0 to 7F. The two index registers
are automatically updated from the values entered

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 20 www.emmicroelectronic.com

2.9.1.3.Source Code Buffer
The source code buffer contains the source code of the application being executed
in the emulator. All data concerning the program is shown in a table form as shown
below. It is also possible from this window to activate and deactivate instruction
breakpoints as well as defining code sections to be traced.

2.9.1.3.1.Source code data
The data concerning the program being emulated is shown in the following columns

Column Contents
B Enable an instruction break at this line
T Trace this instruction

Line Line number in the list file (*.prn)

Addr The ROM address

Code The 16 bit machine code generated by the assembler

Label Any labels defined in the source code

Instr The instruction

Operand The eventual instruction operands

Remarks Any eventual comments associated with the instruction

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 21 www.emmicroelectronic.com

2.9.1.3.2.Activating / Deactivating Instruction Breakpoints
Instruction breakpoints can be set by simply clicking in the column « B » on the line
where the breakpoint is required. When a breakpoint is set it is indicated by a cross
in the « B » column as shown below.

Fig. 14 Setting instruction breakpoints in the emulator control panel

To remove an instruction break point simply click in the « B » column to toggle the
instruction break function. It should be noted that for instruction breakpoints to be
active they should be globally enabled using the « Instruction Break Enable Button »
in the Execution toolbar.

In order to clear all breakpoints at once, just click the mouse on the « B » (on the title
line).

When breakpoints are set with the emulator stopped, they are directly written to the
in-circuit emulator. However, if the breakpoint is set while the emulator is running it is
necessary to perform a down load of the program before the change in the
breakpoints will be implemented.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 22 www.emmicroelectronic.com

2.9.1.3.3.Defining Code to be Traced
Any program instruction can be traced by clicking in the « T » column on the
corresponding instruction line. A traced instruction is indicated by an « x » in the
« T » column as shown below.

Fig. 15 Selecting instructions to be traced in the emulator control panel

You can activate many adjacent trace lines at once by dragging the mouse (keeping
the left button down, while moving the mouse) along the trace column, from a start
line to an end line and then releasing the left button ; the whole selected block will be
marked with « x ».

You can also activate all the lines of a program at once, just be depressing the « T »
(on the title line)

To remove a trace, depress the Ctrl-Key first and, while keeping it down, click on the
« x » you want to eliminate. Analog to this, you can remove many (or all) trace
marks at once by first depressing the Ctrl-Key and, while keeping it down, clicking or
dragging the mouse, as explained before for activating traces.

When traces are set with the emulator stopped the trace point is directly written to
the in-circuit emulator. However, if the trace point is set while the emulator is running
it is necessary to perform a down load of the program before the change in the trace
will be implemented.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 23 www.emmicroelectronic.com

2.9.2. Emulator RAM Window
The RAM Window is opened together with the Control Window and is a mirror of the
complete RAM/Reg Map of the emulated/simulated controller, ordered by address.

Fig. 16 The RAM-Window. Editing a variable’s value

To edit a variable’s value, click the mouse on the corresponding cell and an edit box
will open. To confirm the changes made you have to press ENTER. If you decide not
to confirm the change, press ESCAPE.

Note : any changes made on the RAM Window are immediately reflected on the
Watch Window and vice-versa .

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 24 www.emmicroelectronic.com

2.9.3. Emulator Watch Window
The Emulator Watch Window contains all the symbol definitions of the application
currently loaded in the emulator control window source code buffer. It is
automatically updated each time a new binary file is loaded into the emulator control
window. The emulator watch window, as shown below is composed of two tables.

Fig. 17 The data watch panel

The table on the right is the symbol table and is a list of all the RAM/Reg symbols
defined in the application. Next to the symbol definition is the value of the symbol.
The table on the left is the Watch data table. This table contains all the variables
which are currently being watched. With the VICE the watch data is updated after
each instruction, however, with the ICE the watch data is only updated once the
emulator enters stop mode due to an emulator break or a user requested stop.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 25 www.emmicroelectronic.com

2.9.3.1.The Watch Table
The watch table is composed of the following components

Column Contents

Label The label being watched

Addr The address of the watched label

Data The data value of the variable at the last emulation break

R Enables the relation testing during the read of the address

W Enables the relation testing during the write of the address

Rel Defines the relation used in the relationship test

Match Defines the reference value used in the relation test

2.9.3.2.Adding or deleting Variables in the Watch Table
A variable can be added to the watch table by clicking on the variable in the Symbol
table or the source code buffer in the emulator control window. Then click on the
column header « Label » in the watch window. The variable is then added at the
bottom of the watch table.

To delete a variable from the watch table select the label in the watch table and
press the « Del » key.

2.9.3.3.Modifying Variables in the Watch Table
It is possible to change the value of any variable being watched ; to do this, click the
mouse on the value to be edited and an edit box will then open to enable you to
make changes. Once you have completed edition, you have to depress ENTER, so
the system will validate the changes and close the edit box. If you depress ESCAPE,
the edit box will close without validating any changes.

It is also possible to introduce a new symbol (only valid during debugging) : this is
accomplished by clicking on the address field of the empty line and typing in the
address of the new watch symbol ; the name will be automatically generated.
This new symbol won’t be reflected in the RAM-window, which will always reflect the
real source information.

Note :
This option is only available when the emulator is in Break mode, consequently the
emulator must be stopped before any data modification is performed.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 26 www.emmicroelectronic.com

Fig. 18 Changing the value of a watched variable

2.9.3.4.Setting Data Breakpoints.
It is possible to define breakpoints when a read and / or write of a particular address
occurs. This is enabled by selecting the « R » option for read and the « W » option
for write in the watch table. It is also possible to add a logical relationship to this data
breakpoint (for example break only when 0F is written to the address location). To
define a relation select the « Rel » or « Match » option and enter the relationship.
The following relationships are possible.

Relationship Signification

<>= MATCH Always true (break)

< MATCH Break when variable is less than MATCH

<= MATCH Break when variable is less than or equal to MATCH

> MATCH Break when variable is greater than MATCH

>= MATCH Break when variable is greater than or equal to MATCH

<>MATCH Break when variable is NOT equal to MATCH

=MATCH Break when variable is equal to MATCH

Data breakpoint evaluation is only active if the data breakpoint enable button is
selected in the « Execution Toolbar» of the Emulator control window.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 27 www.emmicroelectronic.com

2.9.4. Emulator Trace Window
Once the trace enable button in the emulator control window is selected the emulator
trace window (shown below) is loaded.

Fig. 19 The trace buffer window

The trace window is made up of the following components.

Reset Button

 This button reset the trace memory.

Read Button

 Uploads the trace buffer contents from the in-circuit emulator

Note : in fact the Read Button is not needed anymore, because actually, if tracing is
active, the trace buffer will be automatically updated as soon as the emulator stops.

Address value

 This value is the address of the trace memory.

Trace Mode selection

This option list enables the user to chose between the two trace modes. The first
mode fills the trace memory and stops, generating a trace break. This enables to
record the first instruction of an execution. In the second mode, when the trace
memory is full, the Emulator resets the trace address and refills the memory again ;

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 28 www.emmicroelectronic.com

no trace break is generated. This option enables the last executed instruction to be
stored.

Trace memory format

The trace memory has the following format :

PC Value of the Program Counter
ACC Value of the Accumulator
C Value of the Carry bit
D Value of the Data break
I Value of the Instruction Break

To make the trace buffer more readable the source code statements are added to
the trace buffer contents. The data shown are the labels the instructions and the
comments.

Printing the trace buffer contents. It is possible to print the trace buffer contents to
the default system printer by selecting the option « Print » from the file menu while
the trace buffer window is active. It is possible to select the trace buffer address to
print by entering the start address and end address in the trace buffer print dialogue
box shown below.

Fig. 20 Trace buffer print dialogue box

The trace buffer is printed using the font defined for the trace buffer window

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 29 www.emmicroelectronic.com

2.9.5. VICE IO Window
The IO Window contains a graphical representation of the periphery of the simulated
controller ; it is therefore only available in VICE Mode and its exact form is controller
dependant. Nevertheless, the principle remains the same, so that we will explain it’s
use taking the 6503 example

Fig. 21 The I/O Window

The state of each port is shown by the circular LED. When the port is high, the LED
is red and when the port is low the LED is yellow. For input ports, the state of the
port can be set by using the push buttons. By putting the switch to « H » the port is
set to high and by putting the switch to « L » the port is set to low. For the other
peripheral modules the current state is indicated ; some of them allow interaction or
input from the user (SVLD, for instance).

Note : details concerning the I/O Window for different controllers are given in the
Peripheral Interface Modules Manual, which is included in this binder.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 30 www.emmicroelectronic.com

2.9.6. In-circuit Emulator Communication Configuration
The software development system is connected to the in-circuit emulator is by a
serial port. The serial communication parameters are set using the « Ice Config »
option in the « emulator » menu. Selection of this option activates the
communication dialogue box shown below.

Fig. 22 In-circuit emulator communication parameters

2.9.6.1.COM Port
Selects the serial port used for the communication with the in-circuit emulator. The
default setting is COM1

2.9.6.2.Baud Rate
Selects the baud rate of the serial communication. The possible options are 2400,
4800, 9600, 14400 and 19200 baud. However, actually the in-circuit emulator
supports only 9600 an 19200 baud. The default setting is 19200 baud

2.9.6.3.DTR CTS RTS DSR
Shows the actual state of the communication control lines

2.9.6.4. Buffered
Selecting the buffered option enables the buffering of the serial communication by
the development system software. This is recommended for normal use or if
communication problems with the in-circuit emulator are encountered.

2.9.6.5.OK button
Validates the selected communication parameters. The old communication port is
closed and the selected port opened with the selected communication parameters.

2.9.6.6.Cancel Button
Cancels any modifications and exits. The communication port remains active with
the existing parameters

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 31 www.emmicroelectronic.com

2.9.6.7.Reset Button
Resets the communication. The communication state is reset and the serial port is
closed and reopened

2.9.7. MTP Interface
If you have an MTP-Programmer connected correctly to your computer, then this
interface will allow you to program any MTP-controller (EM65XX Series) directly from
your development system. In order to open this window, choose the « MTP » under
the « Emulation » menu.

Fig. 23 The MTP-Window.

Note : for detailed information on this topic, see the MTP manual, which is also part
of this binder.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 32 www.emmicroelectronic.com

3. EM66xx Programming Model
This section provides an overview of the EM66xx 4-bit microcontroller family and the
corresponding programming model. For a more detailed description of each
controller please refer to the corresponding specifications.

3.1. Global Architecture
The general structure of the EM66xx family of microcontrollers is shown below.

Fig. 24 General structure of EM66xx 4bit microcontrollers

At the heart of the EM EM66xx microcontroller family is a 4-bit arithmetic and logic
unit (ALU), which is capable of executing 32 different instructions. The ROM memory
used has a maximum capacity of 4K 16-bit instructions. The data consists of 126 4
bit words which is distributed between the RAM and peripheral registers. The entire
address space can be accessed in an indexed manner using the register indexes.

B Bus <4>

Control Unit Op-code

MAC<4> Cy, Cy_int,Z

A Bus <4>

SAC<4>

ALU<4>

RAM and
IO Ports
(Max 126*4)

XH
XL

Data <4>

RAM(i) <7>

3 * PC<12> ROM
(Max 4K * 16)

MUX

IR

CALL to Interrupt
address

Branch Address

Stack Pointer

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 33 www.emmicroelectronic.com

The controllers have three program counters (PC) which means 2 possible program
levels when interrupts are enabled, or three program levels if the interrupts are
disabled.

3.1.1. Instruction Register
This register stores the next instruction that will be executed.

3.1.2. Control Unit
This functional block generates the internal clock phases of the microcontroller,
controls the halt mode, the interrupt requests, decodes the instructions and sends
the control signals to the other blocks in microcontroller.

3.1.3. Program Counter (PC)
The program counter determines the ROM address of the next instruction to be
executed. The processor has a stack of three program counters (PC0 to PC2). The
current program counter is designated by the stack pointer (SP).

3.1.4. Stack Pointer (SP)
The stack pointer determines the current program counter (PC). At reset the SP is
reset to PC0.

3.1.5. Accumulator (Accu)
The accumulator stores the 4 bit result of the ALU operations.

3.1.6. Status Register
The status register is composed of three flags. The Z flag which is set to 1 if the
result of the last ALU operation equals zero. The Cy flag and the Cy_Int flag which
receive any addition, subtraction or shift carries. The Cy flag is used during normal
program execution and the Cy_Int flag is automatically selected during interrupt
handling thus conserving the state of the Cy flag during interrupt.

3.1.7. Index Registers
The index registers XH (index high, 3 bits) and XL (index low, 4 bits) are combined
to define a 7 bit offset in the IO (RAM / periphery) address space.

3.1.8. Interrupts
An interrupt can be generated by one or more peripherals. These signals are
combined with a logical OR gate to produce a single interrupt request to the
microcontroller core. The resulting interrupt request results in the microcontroller
executing a CALL 01 instruction and setting the INT flag. The RTI instruction signals
the end of the interrupt routine. It executes a return to the instruction which should
have been executed at the moment of the interruption (as opposed to a RET

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 34 www.emmicroelectronic.com

instruction which returns to the address following the a CALL instruction) and resets
the INT flag.

If interrupts are enabled then the programmer should be careful to only use two
program counters in the main body of the program, since one should be reserved for
the interrupt handler call. The interrupt handler routine must be placed at the
address 001H and should be terminated with a RTI instruction. On entering the
interrupt handler the Cy_int flag is automatically selected. However, the value of the
Accu should be saved to a temporary RAM location. The value of Accu should also
be restored prior to the execution of the RTI instruction. For an overview of the
advised program structure please see fig. 2.

The EM66xx micro controllers only have one interrupt handler and cannot perform
nested interrupts. If a second interrupt signal arrives when the controller is already
interrupted then the signal is not processed until the controller has finished
processing the first interrupt. Immediately after the RTI instruction the controller will
renter the interrupt handler without executing an instruction in the main body of the
program.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 35 www.emmicroelectronic.com

3.2. Instruction Set
The following abbreviations are used in the instruction set description:

Addr : ROM address.
PC : Program Counter
SP : Stack Pointer
Reg : Either a RAM or peripheral register address
IO : The RAM, peripheral register address space
IX : The index register (XH and XL combined)
Dat : A 4-bit datum
Accu : Accumulator

The EM66xx instruction set can be classified according to the following categories:

3.2.1. General and Program Flow Control Instructions

Assembler Syntax Function State Z State Cy
JMP Addr PC(SP) = Addr - -
JPV1 Addr *if TESTVAR1 = 1 PC(SP) = Addr - -
JPV2 Addr *if TESTVAR 2 = 1 PC(SP) = Addr - -
JPV3 Addr *if TESTVAR 3 = 1 PC(SP) = Addr - -
JPC Addr if Cy(Cy_Int) = 1 PC(SP) = Addr - -
JPNC Addr if Cy(Cy_Int) = 0 PC(SP) = Addr - -
JPZ Addr if Z = 1 PC(SP) = Addr - -
JPNZ Addr if Z = 0 PC(SP) = Addr - -
CALL Addr SP = SP + 1; PC(SP) = Addr - -
RET SP = SP - 1; PC(SP) = PC(SP) + 1 - -
RTI SP = SP - 1 - -
HALT PC(SP) = PC(SP) + 1; standby mode - -
NOP no instruction - -

* TESTVAR1, TESTVAR2 and TESTVAR3 are internal signals which, depending on the target
controller, may be connected to different sources. Normally the signals are connected to input port A.
The JPV1, JPV2 and JPV3 instructions allow a conditional jump to be directly executed on the state
of the signals. For the assignment of the TESTVAR signals please refer to the specifications of the
target micro controller.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 36 www.emmicroelectronic.com

3.2.2. Register (RAM) Load and Store Operations
(all instructions imply PC(SP) = PC(SP) + 1)

3.2.2.1.Direct load and store operations

Assembler Syntax Function State Z State Cy
STI Reg, Dat IO(Reg) = Dat - -
STA Reg IO(Reg) = Accu - -
LDI Dat Accu = Dat z 0
LDR Reg Accu = IO(Reg) z 0

3.2.2.2.Indexed load and store operations

Assembler Syntax Function State Z State Cy
STIX Dat IO(IX) = Dat - -
STAX IO(IX) = Accu - -
LDRX Accu = IO(IX) z 0
LDRXS Accu=shr[IO(IX)] z see fig. 26

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 37 www.emmicroelectronic.com

3.2.3. Binary Operations

3.2.3.1.Shift left
The principal of the shift left instruction is the following:

Fig. 25 Shift left operation

Assembler Syntax Function State Z State Cy
SHL (or SHLR♦) Reg Accu = IO(Reg)*2 z see fig. 25
SHLX Accu = IO(IX) * 2 z see fig. 25

♦ now there are 2 definitions for the same instruction. SHL is the one actually adviced for new
projects, because it is more consistent with the « shift right » instruction group. The former version
(SHLR) will only be supported for compatibility purposes with existing programs.

Cy 3 2 1 0

Cy 3 2 1 0

0

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 38 www.emmicroelectronic.com

3.2.3.2.Shift right
The principal of the right shift operation is the following :

Fig. 26 Shift right operation

Assembler Syntax Function State Z State Cy
SHRA Accu = shr(Accu) z see fig. 26
SHRR Reg Accu = shr(Accu = IO(Reg)) z see fig. 26

3.2.3.3.Direct binary operations

Assembler Syntax Function State Z State Cy
AND Reg Accu = IO(Reg) AND Accu z 0
NAND Reg Accu = IO(Reg) NAND Accu z 0
OR Reg Accu = IO(Reg) OR Accu z 0
NOR Reg Accu = IO(Reg) NOR Accu z 0
XOR Reg Accu = IO(Reg) XOR Accu z 0
NXOR Reg Accu = IO(Reg) NXOR Accu z 0
CPLR Reg Accu = NOT(IO(Reg)) z 0
CPLA Accu = NOT(Accu) z 0

0

3 2 1 0

Cy3 2 1 0

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 39 www.emmicroelectronic.com

3.2.3.4.Direct binary operations with shift right

Assembler Syntax Function State Z State Cy
ANDS Reg Accu = SHR[IO(Reg) AND Accu] z see fig. 26
NANDS Reg Accu = SHR[IO(Reg) NAND Accu] z see fig. 26
ORS Reg Accu = SHR[IO(Reg) OR Accu] z see fig. 26
NORS Reg Accu = SHR[IO(Reg) NOR Accu] z see fig. 26
XORS Reg Accu = SHR[IO(Reg) XOR Accu] z see fig. 26
NXORS Reg Accu = SHR[IO(Reg) NXOR Accu] z see fig. 26
CPLRS Reg Accu = SHR[NOT(IO(Reg))] z see fig. 26
CPLAS Accu = SHR[NOT(Accu)] z see fig. 26

3.2.3.5.Indexed binary operations

Assembler Function State Z State Cy
ANDX Accu = IO(IX) AND Accu z 0
NANDX Accu = IO(IX) NAND Accu z 0
ORX Accu = IO(IX) OR Accu z 0
NORX Accu = IO(IX) NOR Accu z 0
XORX Accu = IO(IX) XOR Accu z 0
NXORX Accu = IO(IX) NXOR Accu z 0
CPLRX Accu = NOT(IO(IX)) z 0

3.2.3.6.Indexed binary operations with shift right

Assembler Function State Z State Cy
ANDXS Accu = SHR[IO(IX) AND Accu] z see fig. 26
NANDXS Accu = SHR[IO(IX) NAND Accu] z see fig. 26
ORXS Accu = SHR[IO(IX) OR Accu] z see fig. 26
NORXS Accu = SHR[IO(IX) NOR Accu] z see fig. 26
XORXS Accu = SHR[IO(IX) XOR Accu] z see fig. 26
NXORXS Accu = SHR[IO(IX) NXOR Accu] z see fig. 26
CPLRXS Accu = SHR[NOT(IO(IX))] z see fig. 26

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 40 www.emmicroelectronic.com

3.2.4. Arithmetic Operations
The basic arithmetic operations (INC, DEC, ADD and SUB) can be direct, indexed,
direct with shift right or indexed with shift right. When the instruction is combined with
a shift right it is performed according to the following principal.

Fig. 27 Principal of arithmetic operations followed by shift right

3.2.4.1.Direct arithmetic operations

Assembler Syntax Function State Z State Cy
ADD Reg Accu = IO(Reg) + Accu z if (Accu >15) c = 1
INC Reg Accu = IO(Reg) + 1 z if (Accu >15) c = 1
SUB Reg Accu = IO(Reg) - Accu z if(Accu>=0) c=1
DEC Reg Accu = IO(Reg) - 1 z if(Accu>=0) c=1

3 2 1 0

Cy 3 2 1 0

Cy 3 2 1 0 3 2 1 0

Operator

Accu Register

Shift right

Cy

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 41 www.emmicroelectronic.com

3.2.4.2.Direct arithmetic operations with shift right

Assembler Syntax Function State Z State Cy
ADDS Reg Accu = SHR[IO(Reg) + Accu] z see fig. 27
INCS Reg Accu = SHR[IO(Reg) + 1] z see fig. 27
SUBS Reg Accu = SHR[IO(Reg) - Accu] z see fig. 27
DECS Reg Accu = SHR[IO(Reg) - 1] z see fig. 27

3.2.4.3.Indexed arithmetic operations

Assembler Function State Z State Cy
ADDX Accu = IO(IX) + Accu z if (Accu >15) c = 1
INCX Accu = IO(IX) + 1 z if (Accu >15) c = 1
SUBX Accu = IO(IX) - Accu z if(Accu>=0) c=1
DECX Accu = IO(IX) - 1 z if(Accu>=0) c=1

3.2.4.4.Indexed arithmetic operations with shift right

Assembler Function State Z State Cy
ADDXS Accu = SHR[IO(IX) + Accu] z see fig. 27
INCXS Accu = SHR[IO(IX) + 1] z see fig. 27
SUBXS Accu = SHR[IO(IX) - Accu] z see fig. 27
DECXS Accu = SHR[IO(IX) - 1] z see fig. 27

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 42 www.emmicroelectronic.com

3.2.5. Binary representation of Instruction set
The following section describes the binary coding of the EM66xx instruction set.

Instruction Binary representation

JMP <Adr>

JPV1 <Adr>

JPV2 <Adr>

JPV3 <Adr>

JPC <Adr>

JPNC <Adr>

JPZ <Adr>

JPNZ <Adr>

CALL <Adr>

RET

RTI

NOP

HALT

STI <R>,<D>

STIX <D>

STA <R>

STAX

LDI <D>

0000 Adr<12>

0001 Adr<12>

0010 Adr<12>

0011 Adr<12>

0100 Adr<12>

0101 Adr<12>

0110 Adr<12>

0111 Adr<12>

1110 Adr<12>

11111010

11110010

11110000

11110100

1100D<4>0 R<7>

1101 0 R<7>

11111000 D<4>

1101 1

1100D<4>1

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 43 www.emmicroelectronic.com

The rest of the instruction set can be represented in the following way.

ACCU = ACCU op RAM()

If I = 1 the instruction is indexed and if S = 1 a shift right is performed after the
operation.

The coding of the ALU operations (op<5>) is as follows.

Operation Op code
ADD 01001
SUB 00110
INC 00011
DEC 01100
SHL 01111
AND 11000

NAND 10111
OR 11110

NOR 10001
XOR 10110

NXOR 11001
CPLA 10101
CPLR 10011

ACCU = RAM
(LDR <R>) 11100

10 op<5> S I RAM(i)<7>

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 44 www.emmicroelectronic.com

4. EM66xx Assembler Syntax

4.1. Introduction
This section describes in detail the syntax to be followed in assembly programs to
enable EM66xx assembler to assemble correctly. A full description of the directives,
variable and constant definitions, macros and pseudo-op statements supported by
EM66xx assembler is also provided. The subjects covered in this section include:

General Assembly statement rules

How to include general 'documenting text' within programs

Symbol writing and Syntax

Numeric Expression Syntax

Assembler "Pseudo-op" Directives

A later section explains how to write assembly language programs, and in particular,
how EM66xx assembler features can be utilised.

4.2. Instruction Syntax Basics
CPU instructions are written using mnemonics (acronyms) that represent the
required operation. EM66xx assembler is configured for the correct mnemonics set
required by the EM66xx microcontroller family as described in the EM66xx
Instruction Set.

A common feature of all CPU/MPU mnemonics is the division into two basic syntax
elements of:

OPERATOR OPERAND(,OPERAND(,OPERAND))

The OPERATOR specifies in general terms the action that the instruction will
perform, while the OPERANDS specify what the instruction will act upon (unless it is
implied by the OPERATOR in which case no OPERANDS are necessary).

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 45 www.emmicroelectronic.com

When an OPERAND is entered it must be separated from the preceding
OPERATOR by SPACE/TAB character(s). Example instruction mnemonics of the
EM66xx CPU are illustrated below:

HALT ;Enter HALT mode

SUB 00FH ;Subtract Accu from memory address

LDR O1FH ;Load Accu from memory address O1FH

CALL TEST ;Execute TEST subroutine

Within the OPERANDS some instructions may require a numeric value to be
specified (typically a memory address or data value). You can write these values
either as SYMBOLS, CONSTANTS or EXPRESSIONS which are evaluated by the
assembler. Leading labels are automatically assigned with the current program
location for the instruction which is referenced.

4.3. General Statement Rules
Assembly language statements comprise single text lines held in a text file, which
are usually created within a word processor (though the word processor used must
create 'standard' text files). Each statement encodes either a CPU/MPU instruction
or assembler "Pseudo-op" directive.

Fig. 28 EM66xx general statement rules

The text line is considered as having several 'fields' as follows:

Elements enclosed in parentheses are optional and determined by the program or
the particular instruction. Upper/lower case characters are not distinguished unless
enclosed within single quote marks, and blank text lines are ignored.

(LABEL) INSTRUCTION (OPERANDS) (COMMENT)

Name1 LDI Reg, 10 ;This is an example
 JMP Name1
 STAX ;No OPERAND required

(LABEL) DIRECTIVE (OPERANDS) (COMMENT)

Cr EQU 0DH ;Assemble Directives

(LABEL) (COMMENT)

Symbol: ;PC assigned to Symbol

;This is a simple comment for increased program readability

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 46 www.emmicroelectronic.com

Elements must be separated by one or more TAB (ASCII 9) or SPACE characters.
Comments must begin with a semi-colon (;). Only labels are written starting in
column 1 of the text line.

4.4. Embedded Documentation
Embedded COMMENTS can be included in any statement and are taken to be all
characters to the right of a semi-colon (;). This is standard practice of most
assemblers and fully supported by EM66xx assembler.

;Embedded single-line Comment (accepted by most Assemblers)

4.5. Symbol Syntax Rules
Only labels are written starting in column 1 of the text line (or comments as
described above), and when assembled are allocated the memory address of the
instruction. These can then be used within an EXPRESSION to automatically
reference the 'tagged' instruction address. Assembler "pseudo-op" directives may
also require a LABEL as part of the syntax. Syntax rules for labels are:

Unlimited length.

All characters are significant.

May include only uppercase and lowercase letters, digits and the underscore
character (A .. Z, a .. z, 0 .. 9, _).

Cannot begin with digits (0 .. 9).

May be terminated with a colon (:).

Examples of acceptable and non-valid symbols are given below:

ROOX0 ;Valid Label Examples

LOOP1

Mem_Setting

RESET: ;':' allowed if last character

0POS ;illegal - begins with 0

LP*1 ;illegal - contains expression character

RESET:1 ;illegal - contains ':'

Stipulation of LABEL syntax rules is to avoid incorrect evaluation or
misinterpretation. For instance, '0POS' would be assumed to be a numeric constant
as it begins with 0, consequently an eventual 'Syntax Error' would be generated
when it is referenced by an instruction.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 47 www.emmicroelectronic.com

Some assemblers allow labels to be written with a colon (:) appended. This is
optional for EM66xx assembler (the colon is ignored). Note that the term SYMBOL
applies to any character string which is assigned, symbolises or represents a
numeric value (whereas LABEL is used where a symbol is assigned the address of
an instruction).

4.6. Constant Syntax
Constants are direct numeric values written in the operand as (or part of) an
EXPRESSION. Four numeric bases are supported with a variety of 'radix' options to
denote the number base.

All constants are written with the least significant numeral of the number on the right.

 Hex: 0FF37H $FF37

 Binary: 1001B %1001

 Octal: 637Q 637o

 Decimal: 127, -32000, 65000, 100D

 String: 'A','AB' (equivalent to: 41H,4142H)

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 48 www.emmicroelectronic.com

4.7. Expression Syntax
Expressions are a combination of numeric constants, labels/symbols, and
expression operators, which are evaluated by the assembler into a single value.
Expression operators supported are listed below.

All expressions are evaluated using 32-bit calculations.

+ Addition.
- Subtraction
* Multiplication.
\ Division (only Integer part).
/ Division (rounded integer result)
^ Potentiation
MOD Remainder of division.
AND Logical AND operator.
OR Logical OR operator.
XOR Logical XOR operator.
SHR Logical SHIFT RIGHT (shifting 0's in).
SHL Logical SHIFT LEFT (shifting 0's in).

Compound operators using the value to the right include:
NOT n Returns the 'inverted bit-state of n'.
HIGH n Returns the 'upper byte (high 8-bit) of n'
LOW n Returns the 'lower byte (low 8-bit) of n'
OFFSET n Returns the 'lower word (low 16-bit) of n'
UPPER n Returns the 'upper word (high 16-bit) of n'
SWAP n Exchanges the upper/lower bytes (low 16-bit)

Comparisons operate on signed values. True returns 0FFFFFFFFH,
False returns 0.
= or EQ True if equal.
<> or NE True if not equal.
<= or LE True if less than or equal (lower or equal).
< or LT True if less than (lower than).
>= or GE True if greater than or equal (higher or equal)
< or GT True if greater than (higher than).

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 49 www.emmicroelectronic.com

Other special operators:
$ Returns the current PC value.
@ Returns the current VC value.

Expressions are evaluated 'left to right' only, full (nestable) parentheses are allowed
to alter the evaluation order.

All expression elements should be delimited by at least one SPACE character.

An expression at its simplest will be a single numeric constant or a label/variable
identifier. Examples of typical expressions are illustrated below:

0FFFFH

Label / 16 + (Label mod 3)

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 50 www.emmicroelectronic.com

4.8. Assembler Directives

4.8.1. ENDM ENDMACRO MACEND
Syntax : ENDM or ENDMACRO or MACEND

End of macro - Terminates the instructions associated with the current macro
definition and is the complement to the MACRO directive described above.

4.8.2. EQU
Syntax : symbol EQU expr

Equates the expression value with the symbol. Can only occur once for each label
symbol.

IOport1 EQU 0F3H ;IOport1 assigned

4.8.3. INCLUDE
Syntax : INCLUDE filename

Includes assembly source statements from a specified source file. This statement
can also occur within the INCLUDE assembly files (i.e. nesting is permitted).
Example statements are:

INCLUDE MATHS.ASM ;Math Subroutines

INCLUDE IOINIT.ASM ;I/O Control Subs

INCLUDE IOBUFF.ASM ;I/O Buffer Subs

The supplied filename will be searched for within the drive/directory of the main
source file of the project, unless a drive/directory path is specified within the
filename.

If the specified file is found, the current statement position within the parent file is
saved and the source statements of the INCLUDE file are processed. After
assembling the INCLUDE file's statements, the parent file becomes active again and
execution continues from the statement following the INCLUDE directive.

Typically, this directive reads source files as shown in the above example, where
each file contains general purpose subroutines or a common set of MACRO or
variable definitions.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 51 www.emmicroelectronic.com

4.8.4. MACRO
Syntax : label MACRO (par (,par(..)

Define macro - A full description of macros and the relevant processing is described
in the following MACRO DEFINITION section.

A label must be written preceding the MACRO directive, which will become the
'calling name' for the list of instructions that follow this directive (until the
complementary MACEND directive). An example MACRO statement is as follows:

SaveAll MACRO AF, BC, DE, HL' ;Save Registers

The optional formal parameters are used during macro expansion to be replaced by
the call parameters which are passed to the macro when the macro is invoked.

4.8.5. ORG
Syntax : ORG addr

Origin - sets the PC (Program Counter) to the specified address values.

There are several effects that this directive may cause. If it is executed before any
object-code generating statements, it effectively sets the start address for the object-
code; otherwise it specifies the next address for following statements.

ORG 0100H ; Set address to 0100 hex

ORG $ + 16 ; Increase address by 16

ORG statements may generate an error if the new PC value has overflowed the
memory address space or recovered a previously used memory address. Also, you
cannot use 'forward references' within the address expressions. This means it is not
possible to refer to a symbol that has not yet been defined.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 52 www.emmicroelectronic.com

4.9. Macro Definitions
Macros are significant assembly time facilities, which are widely used to simplify
program writing. In essence, a macro represents several assembly language
statements, which are assigned to a symbol name. When the symbol name is
specified as an instruction (i.e. a 'macro call') it will automatically be replaced with
the appropriate list of statements. EM66xx assembler fully supports macro
definitions including:

Flexible Parameter Passing.

Local Symbols.

Conditional Assembly.

Using these definition capabilities macros can be written which represent
complicated program actions and can adjust the object code according to the 'macro
call' operands.

A definition is created by surrounding the required assembly language statements by
the MACRO and MACEND directives as follows:

Fig. 29 Macro definition

All the symbols in a macro are local symbols. Formal parameters defined by the
MACRO directive are replaced by the actual parameters when the macro is
expanded by a macro call.

Fig. 30 Macro implementation

From the above program example, which includes 'macro calls' you, can see how
this facility can also greatly improves program readability. However, you should be
wary of creating a macro that would best be defined as a subroutine as you will
cause the assembly program to be much larger than necessary.

The EM66xx assembler supports very flexible parameter passing. You can specify
any number of parameters as the operand of the 'macro call' statement (all
separated by commas), and whatever is specified replaces the parameter identifiers
specified within the statements of the macro definition.

MoveAll .macro PA, TA, PB, TB
 LDA PA
 STA TA�
 LDA PB
 STA TB
 .macend

;Program example

Start STI VA, 0 ;Start of prog
 STI VB, 1
 MoveAll VA, WA, VB, WB
 CALL Test
 MoveAll WA, VA, WB, VB

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 53 www.emmicroelectronic.com

With this in mind we can illustrate the actual statements which would be assembled
for the program example given above:

Fig. 31 Expanded macro implementation

LABELS can also be defined within macros, and remain local to each separate
'macro call'. Expressions, which reference a label, which is not defined within the
macro, will cause an error.

Note : there is no support for nested macros !

;Program example
Start STI VA, 0 ;Start of prog
 STI VB, 1
 MoveAll VA, WA, VB, WB
;Expansion
MoveAll.PA.1 EQU VA
MoveAll.TA.1 EQU WA
MoveAll.PB.1 EQU VA
MoveAll.TB.1 EQU WB
 LDA MoveAll.PA.1
 STA MoveAll.TA.1
 LDA MoveAll.PB.1
 STA MoveAll.TB.1
 CALL Test
 MoveAll WA, VA, WB, VB
;Expansion
MoveAll.PA.2 EQU WA
MoveAll.TA.2 EQU VA
MoveAll.PB.2 EQU WB
MoveAll.TB.2 EQU VB
 LDA MoveAll.PA.2
 STA MoveAll.TA.2
 LDA MoveAll.PB.2
 STA MoveAll.TB.2

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 54 www.emmicroelectronic.com

4.10. Assembler Error Messages

Error Number Signification

100 Unknown instruction.

200 Undefined variable or constant

209 Incorrect use of parenthesis

212 Relocatable Expression not allowed

230 Reserved Word

240 Wrong Nr. Of Parameters

300 Symbol defined twice

400 Invalid numeric constant.

700 Unable to open an a source code or include file.

705 No end macro defined

708 Nr. of .IF and .ELSE doesn’t match

799 MACRO without name

902 MACRO nesting not allowed

1204 Macro Name defined twice

1599 Program Memory overflow

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 55 www.emmicroelectronic.com

5. Mask ROM
The binary file generated by the EM66xx assembler can be sent directly to EM
Microelectronic Marin SA for mask ROM generation. The binary file should be
accompanied by the selected metal mask options of the specific microcontroller as
well as the binary checksum file generated by the last assembly of the project.

The definition of the possible metal mask options can be found in the target
microcontroller specification manual.

The binary checksum file is generated each time the source code is assembled. The
filename used is dependent on the project name and has the extension STA. The file
is a text file and has the following format.

;--
; D:\V66xx\V6622\TEST\MSCOUNT\MSCOUNT.STA
;--
;
; ROM Characteristic File
;
; Company :
; Reference :
; Software Version :
; Contact :
;
; Date : 13/02/1996
; Time : 15:08
;
; Binary file : D:\V66xx\V6622\TEST\MSCOUNT\MSCOUNT.bin
; File size : 912
; Modified : Tue Feb 13 15:08:06 1996
;
;--
;
; Nb. Instructions : 456 (0 - 01C7)
; Check Sum : 4B8F
; Reference Controls :
;
; 0004 0002 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
; 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
; 0000 0000 0020 0071 001F 0001 0045 000F 0006 0009 0000 0008 0000 0000 0000 0000
; 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 006E 0000 0016
; 0005 0001 0005 0013 0000 0000 0000 0004
;
;--

The Fields Company, Reference, Software Version and Contact should be filled in
with the appropriate customer project parameters. The fields date and time indicate
the date and time of the generation of the checksum file. The fields Binary file, File
size and modified refer to the binary file analysed.

The binary file received will be used to regenerate the control fields Nb. Instructions,
Check Sum and Reference Controls. These values will be cross-checked against the
values sent in the checksum file.

EM66xx
Development System

Copyright © 2005, EM Microelectronic-Marin SA 56 www.emmicroelectronic.com

Copyright © 2005 EM Microelectronic-Marin SA 57 www.emmicroelectronic.com

EM MICROELECTRONIC - MARIN SA

EM66xx Microcontroller

Peripheral Interface modules

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 58 www.emmicroelectronic.com

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 59 www.emmicroelectronic.com

CONTENTS

1. GENERAL... 62
2. EM6503 & EM6505... 63

2.1. PORT A... 63
2.2. PORT B... 64
2.3. PORT C... 64
2.4. PORT D / SERIAL WRITE BUFFER ... 64
2.5. PRESCALER .. 64
2.6. BUZZER .. 64
2.7. TIMER ... 64
2.8. SUPPLY LEVEL DETECTION ... 65

3. EM6504... 66
3.1. PORT A... 66
3.2. PORT B... 66
3.3. PORT C... 67
3.4. PRESCALER .. 67
3.5. BUZZER .. 67
3.6. TIMER ... 68
3.7. SUPPLY LEVEL DETECTION ... 68

4. EM6507... 69
4.1. PORT A... 69
4.2. PORT B... 70
4.3. PORT C... 70
4.4. PORT D / SERIAL WRITE BUFFER ... 70
4.5. PORT E... 70
4.6. PRESCALER .. 71
4.7. BUZZER .. 71
4.8. TIMER ... 71
4.9. SUPPLY LEVEL DETECTION AND PE1 COMPARATOR... 72

5. EM6517... 73
5.1. PORT A... 73
5.2. PORT B... 74
5.3. PORT C... 74
5.4. ADC... 74
5.5. PRESCALER .. 74
5.6. SUPPLY LEVEL DETECTION ... 74
5.7. 10 BIT TIMER ... 75
5.8. SERIAL WRITE BUFFER ... 76
5.9. EEPROM... 76

6. EM6520... 77
6.1. PORT A... 77
6.2. PORT B... 78
6.3. PRESCALER .. 78
6.4. 10 BIT TIMER ... 79
6.5. SUPPLY LEVEL DETECTION ... 79
6.6. LCD OUTPUT... 80

7. EM6521 & EM6522... 81
7.1. PORT A... 81
7.2. PORT B... 82
7.3. SERIAL PORT .. 82
7.4. PRESCALER .. 82
7.5. MILLISECOND COUNTER... 83
7.6. 10 BIT TIMER... 84
7.7. MELODY GENERATOR .. 85

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 60 www.emmicroelectronic.com

7.8. SUPPLY LEVEL DETECTION ... 85
7.9. LCD OUTPUT.. 86

8. EM6525 & EM6526... 87
8.1. PORT A... 87
8.2. PORT B... 88
8.3. SERIAL PORT .. 88
8.4. PRESCALER .. 88
8.5. MILLISECOND COUNTER... 89
8.6. 10 BIT TIMER... 90
8.7. MELODY GENERATOR .. 91
8.8. SUPPLY LEVEL DETECTION ... 91
8.9. CPU FREQUENCY LEVEL.. 91
8.10. LCD OUTPUT.. 92

9. EM6533... 93
9.1. GENERAL CONCEPTS... 93

9.1.1. Paged RAM ... 93
9.1.2. Debouncers and Pulldowns/Pullups.. 93
9.1.3. Prescaler Inhibition .. 93
9.1.4. Emulation restriction .. 93

9.2. DETAILED DESCRIPTION... 94
9.2.1. Port 1 ... 94
9.2.2. Port 2 ... 95
9.2.3. Port 3 ... 95
9.2.4. Port 4 ... 96
9.2.5. Port 5 ... 96
9.2.6. Serial Interface... 96
9.2.7. Prescaler.. 97
9.2.8. Watchdog... 97
9.2.9. Timer 1... 98
9.2.10. Timer 2... 98
9.2.11. Melody Generator .. 99

10. EM6540... 100
10.1. PORT A... 100
10.2. PORT B... 101
10.3. PORT C... 101
10.4. SERIAL WRITE BUFFER (SWB)... 101
10.5. PRESCALER .. 102
10.6. TIMER ... 102
10.7. SUPPLY LEVEL DETECTION ... 104
10.8. EEPROM... 104
10.9. SYS.CLK.ADJ. ... 104

11. EM6580... 105
11.1. PORT A... 105
11.2. PRESCALER .. 106
11.3. TIMER ... 106
11.4. PORT A IN SERIAL MODE .. 108
11.5. SUPPLY VOLTAGE LEVEL DETECTOR AND ADC MODE... 108
11.6. OPTION REGISTERS ... 109

12. EM6680... 110
12.1. PORT A... 110
12.2. PRESCALER .. 111
12.3. TIMER ... 111
12.4. PORT A IN SERIAL MODE .. 113
12.5. SUPPLY VOLTAGE LEVEL DETECTOR AND ADC MODE... 113
12.6. METAL MASK OPTIONS .. 114

12.6.1. View of an edited .prj file.. 114
12.6.2. Options table.. 115

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 61 www.emmicroelectronic.com

12.6.3. Metal mask options example ... 115
13. EM6682... 116

13.1. PORT A... 116
13.2. PRESCALER .. 117
13.3. TIMER ... 117
13.4. PORT A IN SERIAL MODE .. 119
13.5. SUPPLY VOLTAGE LEVEL DETECTOR AND ADC MODE... 119
13.6. OPTION REGISTERS ... 120
13.7. METAL MASK OPTIONS .. 121

13.7.1. View of an edited .prj file.. 121
13.7.2. Options table.. 122
13.7.3. Metal mask options example ... 122

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 62 www.emmicroelectronic.com

1. General
During software simulation using the virtual emulator the state of the microcontroller
periphery is shown by means of the state panel. This panel represents the functional
organisation of the microcontroller periphery and allows an interaction with the
application program being tested. In this way it is a complement to the WATCH
window (see EM66xx Microcontroller Development System Manual) which shows the
state of the microcontroller registers irrespective of function. The software simulation
interface used is dependent on the target controller chosen during project definition.
This document describes the features of each the microcontroller interface modules.
All the microcontroller are simulated in accordance with the MFP specification.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 63 www.emmicroelectronic.com

2. EM6503 & EM6505
The peripheral interface module for the EM6503 is shown below.

Fig. 2-1 Peripheral interface for the EM6503 microcontroller

2.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 072H) and can have
values shown in Table 2-1.

LED state Button State

 Red H Port high

 Yellow L Port low

Table 2-1 Possible input port states

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 073H) is shown next to the
button. The possible interrupt mask states are shown in Table 2-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 2-2 Representation of possible IRQ mask states.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 64 www.emmicroelectronic.com

2.2. Port B
Port B is a bitwise select input output port. The LED and buttons show (address
075H) the state of port B. When the port is input the state can be changed using the
corresponding push buttons. When the port is set to output (address 076H) the
button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 2-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 2-3 Possible states for input output port.

2.3. Port C
Port C can be configured as either a 4 bit input port or a 4 bit output port (bit 1
address 07CH). The possible combinations for the LED and button states are the
same as for port B and are shown in Table 2-3. Port C has maskable interrupt
capabilities (address 079H). The state of the interrupt mask is show next to the port
and can have the states shown in Table 2-2.

2.4. Port D / Serial Write Buffer
Port D can configured as either a 4 bit input port or a 4 bit output port (bit 2 address
07CH). When port D is set to output and serial write mode is selected (bit3 address
068H) the serial clock is output on port D0 and the serial data on port D1. The
possible combinations for the LED and button states for port D are shown in Table 2-
3. When in serial write mode the symbol « NC » is replaced by « SCK » (serial clock)
for port D0 and « SD » (serial data) for port D1.

2.5. Prescaler
The selected prescaler interrupt frequency is indicated. This corresponds to the
value written to bits 0-1 in the register 07DH.

2.6. Buzzer
Indicates the output frequency selected and corresponds to bits 0-1 in the register
07EH.

2.7. Timer

Fig. 2-2 Timer parameters

The following parameters are defined for the 8-bit timer module.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 65 www.emmicroelectronic.com

Parameter Signification
Enabled The symbol signifies the timer is enabled and running. The

symbol signifies the timer is inactive. (Corresponds to bit3 in
register 07EH).

IRQ The symbol signifies that an IRQ will be generated when the
counter counts down to 0 (irq mask bit 3 register 07DH). The
symbol signifies that the IRQ function is inactive.

Autoreload The symbol signifies that the autoreload function (bit 3
register 063H) is active and the symbol that it is inactive.

Input Specifies the counting frequency used by the counter.

Loaded The value with which the counter was initialised and which will
be used for reloading if the autoreload function is active.

Actual The actual counter value.

Table 2-4 Timer parameters values

2.8. Supply level detection
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps 0f 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V will not stop the software simulation of the
microcontroller.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 66 www.emmicroelectronic.com

3. EM6504
The peripheral interface module for the EM6504 is shown below.

fig 3-1 Peripheral interface for the EM6504 microcontroller

3.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 072H) and can have
values shown in Table 3-1

LED state Button State

 Red H Port high

 Yellow L Port low

Table 3-1 Possible input Table port states

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 073H) is shown next to the
button. The possible interrupt mask states are shown in Table 3-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 3-2 Representation of possible IRQ mask states.

3.2. Port B
Port B is an output only port. The LED’s indicates the state of the port. A red LED
indicates the port is high (logical 1) and a yellow LED indicates the port is low (logical
0). The output directly corresponds to the register 078H.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 67 www.emmicroelectronic.com

3.3. Port C
Port C can be configured as either a 4 bit input port or a 4 bit output port (bit 1
address 07AH). The possible combinations for the LED states are the same as for
port B and button states are the same as for port A and are shown in Table 3-1.

3.4. Prescaler

Parameter Signification
IRQ The symbol signifies that an IRQ will be generated according

to the frequency indicated. The symbol signifies that no IRQ
will be generated even though the IRQ flag will be set .
(Corresponds to bit3 in register 07DH).

Input This field indicates the bas frequency that will be used for the
prescaler events (bits 0-1 register 074H).

Table 3-3 Prescaler parameters

3.5. Buzzer
Shows the selected output state of the buzzer (corresponds to bits 0-1 register
07EH). The possible values are shown in Table 3-4.

Value Signification

 2048 Hz output

 Continuous high

 Continuous low

Table 3-4 Possible buzzer output values

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 68 www.emmicroelectronic.com

3.6. Timer

 Fig. 3-2 Timer parameters

The following parameters are defined for the 8 bit timer module.

Parameter Signification
Enabled The symbol signifies the timer is enabled and running. The

symbol signifies the timer is inactive. (Corresponds to bit3 in
register 07EH).

IRQ The symbol signifies that an IRQ will be generated when the
counter counts down to 0 (irq mask bit 3 register 07DH). The
symbol signifies that the IRQ function is inactive.

Autoreload The symbol signifies that the autoreload function (bit 3
register 063H) is active and the symbol that it is inactive.

Input Specifies the counting frequency used by the counter.

Loaded The value with which the counter was initialised and which will
be used for reloading if the autoreload function is active.

Actual The actual counter value.

Table 3-5 Timer parameters values

3.7. Supply level detection
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V will not stop the software simulation of the
microcontroller.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 69 www.emmicroelectronic.com

4. EM6507
The peripheral interface module for the EM6507 is shown below.

Fig. 4.1 Peripheral interface for the EM6507 microcontroller

4.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 072H) and can have
values shown in Table 4-1

LED state Button State

 Red H Port high

 Yellow L Port low

Table 4-1 Possible input Table port states

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 073H) is shown next to the
button. The possible interrupt mask states are shown in Table 4-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 4-2 Representation of possible IRQ mask states.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 70 www.emmicroelectronic.com

4.2. Port B
Port B is a bitwise select input output port. The state of port B (address 075H) is
shown by the LED and buttons. When the port is input the state can be changed
using the corresponding push buttons. When the port is set to output (address 076H)
the button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 4-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 4-3 Possible states for input output port B.

4.3. Port C
Port C can be configured as either a 4 bit input port or a 4 bit output port (bit 1
address 07CH). The possible combinations for the LED and button states are the
same as for port B and are shown in Table 4-3. Port C has maskable interrupt
capabilities (address 079H). The state of the interrupt mask is show next to the port
and can have the states shown in Table 4-2.

4.4. Port D / Serial Write Buffer
Port D can be configured as either a 4 bit input port or a 4 bit output port (bit 2
address 07CH). When port D is set to output and serial write mode is selected (bit3
address 068H) the serial clock is output on port D0 and the serial data on port D1.
The possible combinations for the LED and button states for port D are shown in
Table 4-3. When in serial write mode the symbol « NC » is replaced by « SCK »
(serial clock) for port D0 and « SD » (serial data) for port D1.

4.5. Port E
Port E is a bitwise select input output port. The state of port E (address 066H) is
shown by the LED and buttons. The possible combinations for the LED and button
states are the same as for port B and are shown in Table 4-3. When the port is input
the state can be changed using the corresponding push buttons. When the port is
set to output (address 067H) the button is set to NC (not connected) and the LED
indicates the state of the output port. The button is set COMP when the comparator
is selected (bit 0 address 07BH)

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 71 www.emmicroelectronic.com

4.6. Prescaler
The selected prescaler interrupt frequency is indicated. This corresponds to the
value written to bits 0-1 in the register 07DH.

4.7. Buzzer
Indicates the output frequency selected and corresponds to bits 0-1 in the register
07EH.

4.8. Timer

Fig. 4-2 Timer parameters

The following parameters are defined for the 8-bit timer module.

Parameter Signification
Enabled The symbol signifies the timer is enabled and running. The

symbol signifies the timer is inactive. (Corresponds to bit3 in
register 07EH).

IRQ The symbol signifies that an IRQ will be generated when the
counter counts down to 0 (irq mask bit 3 register 07DH). The
symbol signifies that the IRQ function is inactive.

Autoreload The symbol signifies that the autoreload function (bit 3
register 063H) is active and the symbol that it is inactive.

Input Specifies the counting frequency used by the counter.

Loaded The value with which the counter was initialised and which will
be used for reloading if the autoreload function is active.

Actual The actual counter value.

Table 4-4 Timer parameters values

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 72 www.emmicroelectronic.com

4.9. Supply level detection and PE1 Comparator

fig. 4-3 SVLD comparator parameters

It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V will not stop the software simulation of the
microcontroller.

The following parameters are defined for the PE1 comparator module.

Parameter Signification
COMP The symbol signifies the comparator is enabled. The symbol

 signifies the comparator is not running. (Corresponds to bit1
in register 07BH).

IRQ
COMP

The symbol signifies that an IRQ will be generated when the
comparator reached the detection level. (irq mask bit 3 register
06DH). The symbol signifies that the IRQ function is inactive.

The scroll bar is used to simulate the level of the input of PE1. The detection level is
fixed by the SVLD selected bits.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 73 www.emmicroelectronic.com

5. EM6517
The peripheral interface module for the EM6517 is shown below.

Fig. 5-1 Peripheral interface for the EM6517 microcontroller

5.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 050H) and can have
values shown in Table 5-1.

LED state Button State

 Red H Port high

 Yellow L Port low

Table 5-1 Possible input Table port states

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 065H) is shown next to the
button. The possible interrupt mask states are shown in Table .

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 5-2 Representation of possible IRQ mask states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 74 www.emmicroelectronic.com

5.2. Port B
Port B is a bitwise select input output port. The state of port B (address 052H) is
shown by the LED and buttons. When the port is input the state can be changed
using the corresponding push buttons. When the port is set to output (address 051H)
the button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 5-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 5-3 Possible states for input output port B.

5.3. Port C
Port C can be configured as either a 4 bit input port or a 4 bit output port (bit 1
address 053H). The possible combinations for the LED and button states are the
same as for port B and are shown in Table 5-3.

5.4. ADC
The EM6517 has two 8bit ADC channels. Using the scroll bars can modify the value
of each channel. The actual value of each channel is shown.

5.5. Prescaler
The state of the 1Hz and 32Hz interrupt masks are shown. The symbol indicates
that the interrupt mask is active and the symbol indicates that the interrupt mask is
inactive

5.6. Supply level detection
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V would not stop the software simulation of the
microcontroller.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 75 www.emmicroelectronic.com

5.7. 10 bit timer
The parameters for the 10 bit counter and
there possible values are the following:

Parameter Signification Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQ IRQ mask active for limit event
(bit 1 reg. 06AH)

 Disabled
 Enabled

Comp.IRQ IRQ mask active for compare
event (bit 0 reg. 06AH)

 Disabled
 Enabled

PWM Pulse width modulation output to
port B3 (bit 3 reg. 06DH)

 Disabled
 Enabled

Comp. Enabled Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input event for counter Port A0
Port A3
16KHz
2048Hz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 5-4 10 bit Timer parameters and states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 76 www.emmicroelectronic.com

5.8. Serial write buffer
The serials write buffer parameters are shown. The output frequency is indicated
next to the representation of the serial clock. The CLK LED indicates the state of the
clock and the state of the data line is indicated by the state of the data LED. The
data transmitted as well as the size of the data transmitted is indicated at the bottom
of the window.

5.9. EEPROM
The contents of the internal EEPROM of the EM6517 are shown in the EEPROM
section. The data is in hexadecimal format and is read only.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 77 www.emmicroelectronic.com

6. EM6520
The peripheral interface module for the EM6520 is shown below.

Fig. 6-1 Peripheral interface for the EM6520 microcontroller

6.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 050H) and can have
values shown in Table 6-1.

LED state Button State

 Red H Port high

 Yellow L Port low

Table 6-1 Possible states of input port A

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 065H) is shown next to the
button. The possible interrupt mask states are shown in Table 6-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 6-2 Representation of possible IRQ mask states.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 78 www.emmicroelectronic.com

6.2. Port B
Port B is a bitwise select input output port. The state of port B (address 052H) is
shown by the LED and buttons. When the port is input the state can be changed
using the corresponding push buttons. When the port is set to output (address 051H)
the button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 6-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 6-3 Possible states for input output port B.

6.3. Prescaler
The state of the 1Hz, 32Hz and Blink interrupt masks are shown. The symbol
indicates that the interrupt mask is active and the symbol indicates that the
interrupt mask is inactive.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 79 www.emmicroelectronic.com

6.4. 10 bit timer
The parameters for the 10 bit counter and there possible values are the following:

Parameter Signification Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQ IRQ mask active for limit event
(bit 1 reg. 06AH)

 Disabled
 Enabled

Comp.IRQ IRQ mask active for compare
event (bit 0 reg. 06AH)

 Disabled
 Enabled

PWM Pulse width modulation output to
port B3 (bit 3 reg. 06DH)

 Disabled
 Enabled

Comp. Enabled Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input event for counter Port A0
Port A3
16KHz
2048Hz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 6-4 10 bit Timer parameters and states

6.5. Supply level detection
The state of the supply voltage level detector parameters is indicted in the section
supply. The source used of detection as well as the Measurement State and result
are shown.
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 80 www.emmicroelectronic.com

obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V would not stop the software simulation of the
microcontroller.

6.6. LCD output
If no custom LCD configuration display is defined for a project the default display
configuration shown in Fig. 6-2 is used.

Fig. 6-2 EM6620 default LCD output

The backplane represents the bits of the LCD address space and the segment
represents the address of the LCD register (segment 0 is equal address 040 hex and
segment is equal to address 047 hex).

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 81 www.emmicroelectronic.com

7. EM6521 & EM6522
The peripheral interface module for the EM6522 is shown below.

Fig. 7-1 Peripheral interface for the EM6522 microcontroller

7.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 050H) and can have
values shown in Table 7-1.

LED state Button State

 Red H Port high

 Yellow L Port low

Table 7-1 Possible input Table port states

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 065H) is shown next to the
button. The possible interrupt mask states are shown in Table 7-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 7-2 Representation of possible IRQ mask states.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 82 www.emmicroelectronic.com

7.2. Port B
Port B is a bitwise select input output port. The state of port B (address 052H) is
shown by the LED and buttons. When the port is input the state can be changed
using the corresponding push buttons. When the port is set to output (address 051H)
the button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 7-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 7-3 Possible states for an input output port.

7.3. Serial Port
The serial port can be defined as a parallel input port or a parallel output port. When
in either of these modes the possible combinations of the LED states and button
states are the same as those for port B (see Table 7-3 Possible states for an input
output port.).

When in serial mode the ports have the following attributions

Port Function Possible states

 In Serial Data In Input

Clk Serial Clock Output in master mode

Input in slave mode

Out Serial Data Out Output

S Status - Chip select (bit 2 reg.054H) Output

Table 7-4 Serial port states

7.4. Prescaler
The state of the 1Hz, 8Hz and Blink interrupt masks are shown. The symbol
indicates that the interrupt mask is active and the symbol indicates that the
interrupt mask is inactive.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 83 www.emmicroelectronic.com

7.5. Millisecond Counter
The parameters for the millisecond counter and there possible values are the
following:

Parameter Signification Possible values

Enabled Millisecond counter enabled Disabled
 Enabled

Count Counter running and current value
shown is shown.

 Disabled
 Enabled

Start Start event CPU controller
 Rising edge PA3
 Falling edge PA3

Stop End event CPU controller
 Rising edge PA3
 Falling edge PA3

0.1Sec IRQ 100 ms IRQ active Disabled
 Enabled

Table 7-5 Millisecond counter parameter states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 84 www.emmicroelectronic.com

7.6. 10 bit Timer
The parameters for the 10 bit counter and there possible values are the following:

Parameter Meaning Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQCount0 IRQ mask active for Count 0
event (bit 1 reg. 06AH)

 Disabled
 Enabled

IRQComp IRQ mask active for compare
event (bit 0 reg. 06AH)

 Disabled
 Enabled

PWM Pulse width modulation output to
port B3 (bit 3 reg. 06DH)

 Disabled
 Enabled

EnComp Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input event for counter Port A0
Port A3
16KHz
2048Hz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Start Val Initial Value 0 - 3FF

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 7-6 10 bit Timer parameters and states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 85 www.emmicroelectronic.com

7.7. Melody Generator
The parameters for the 7-tone melody generator and there possible values are the
following:

Parameter Signification Possible values

Buzzer Out Buzzer output activate Disabled
 Enabled

IRQ Enabled IRQ mask active count down
event

 Disabled
 Enabled

XX Hz Output Output frequency 0 Hz
1365 Hz
1638 Hz
2048 Hz
2340 Hz
2730 Hz
3276 Hz
4096 Hz

Timer frequency
and counter

Base frequency for the timer and
the number of events before an
IRQ

1, 4,16, 64 Hz Clk
events 0-0FH

Autoreload The state of the autoreload
function

 Disabled
 Enabled

Continuous Frequency is continuously output
and is independent of the timer

 Disabled
 Enabled

Table 7-7 Melody generator parameters and possible states

7.8. Supply level detection
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V will not stop the software simulation of the
microcontroller.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 86 www.emmicroelectronic.com

7.9. LCD Output
If no custom LCD configuration display is defined for a project the default display
configuration shown in Fig. 7-2 is used.

Fig. 7-2 EM6622 default LCD output

The backplane represents the bits of the LCD registers. Segments 0 to 15 map to
the address space of the register LCD_1 and segments 16 to 31map to the address
space of LCD_2.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 87 www.emmicroelectronic.com

8. EM6525 & EM6526
The peripheral interface module for the EM6526 is shown below.

Fig. 8-1 Peripheral interface for the EM6526 microcontroller

8.1. Port A
Port A is an input port with individual maskable interrupts. The circular LED’s as well
as the push buttons indicates the state of port A (address 050H) and can have
values shown in Table 8-1.

LED state Button State

 Red H Port high

 Yellow L Port low

Table 8-1 Possible input Table port states

to change the state of the port click on the corresponding button.

The state of the interrupt mask for port A (address 065H) is shown next to the
button. The possible interrupt mask states are shown in Table 9-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 8-2 Representation of possible IRQ mask states.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 88 www.emmicroelectronic.com

8.2. Port B
Port B is a bitwise select input output port. The state of port B (address 052H) is
shown by the LED and buttons. When the port is input the state can be changed
using the corresponding push buttons. When the port is set to output (address 051H)
the button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 8-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 8-3 Possible states for an input output port.

8.3. Serial Port
The serial port can be defined as a parallel input port or a parallel output port. When
in either of these modes the possible combinations of the LED states and button
states are the same as those for port B (see Table 8-3 Possible states for an input
output port.).

When in serial mode the ports have the following attributions

Port Function Possible states

 In Serial Data In Input

Clk Serial Clock Output in master mode

Input in slave mode

Out Serial Data Out Output

S Status - Chip select (bit 2 reg.054H) Output

Table 8-4 Serial port states

8.4. Prescaler
The state of the 1Hz, 8Hz and Blink interrupt masks are shown. The symbol
indicates that the interrupt mask is active and the symbol indicates that the
interrupt mask is inactive.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 89 www.emmicroelectronic.com

8.5. Millisecond Counter
The parameters for the millisecond counter and there possible values are the
following:

Parameter Signification Possible values

Enabled Millisecond counter enabled Disabled
 Enabled

Count Counter running and current value
shown is shown.

 Disabled
 Enabled

Start Start event CPU controller
 Rising edge PA3
 Falling edge PA3

Stop End event CPU controller
 Rising edge PA3
 Falling edge PA3

0.1Sec IRQ 100 ms IRQ active Disabled
 Enabled

Table 8-5 Millisecond counter parameter states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 90 www.emmicroelectronic.com

8.6. 10 bit Timer
The parameters for the 10 bit counter and there possible values are the following:

Parameter Meaning Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQCount0 IRQ mask active for Count 0
event (bit 1 reg. 06AH)

 Disabled
 Enabled

IRQComp IRQ mask active for compare
event (bit 0 reg. 06AH)

 Disabled
 Enabled

PWM Pulse width modulation output to
port B3 (bit 3 reg. 06DH)

 Disabled
 Enabled

EnComp Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input event for counter Port A0
Port A3
16KHz
2048Hz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Start Val Initial Value 0 - 3FF

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 8-6 10 bit Timer parameters and states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 91 www.emmicroelectronic.com

8.7. Melody Generator
The parameters for the 7-tone melody generator and there possible values are the
following:

Parameter Signification Possible values

Buzzer Out Buzzer output activate Disabled
 Enabled

IRQ Enabled IRQ mask active count down
event

 Disabled
 Enabled

XX Hz Output Output frequency 0 Hz
1365 Hz
1638 Hz
2048 Hz
2340 Hz
2730 Hz
3276 Hz
4096 Hz

Timer frequency
and counter

Base frequency for the timer and
the number of events before an
IRQ

1, 4,16, 64 Hz Clk
events 0-0FH

Autoreload The state of the autoreload
function

 Disabled
 Enabled

Continuous Frequency is continuously output
and is independent of the timer

 Disabled
 Enabled

Table 8-7 Melody generator parameters and possible states

8.8. Supply level detection
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V will not stop the software simulation of the
microcontroller.

8.9. CPU Frequency level
The equivalent ROM version allows the user to select by metal option 3 different
system operating clock for the CPU 32kHz, 64kHz or 128kHz.

The clock for the peripherals is always 32 kHz.

Pressing the appropriate button on the simulator can simulate these frequencies.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 92 www.emmicroelectronic.com

8.10. LCD Output
If no custom LCD configuration display is defined for a project the default display
configuration shown in Fig. 8-2 is used.

Fig. 8-2 EM6626 default LCD output

The backplane represents the bits of the LCD registers. Segments 0 to 15 map to
the address space of the register LCD_1 and segments 16 to 31 map to the address
space of LCD_2.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 93 www.emmicroelectronic.com

9. EM6533
9.1. General Concepts

9.1.1. Paged RAM

The paged RAM concept of the 6633 is treated as follows:
the IDE (Integrated Development Environment) can only display one Page at a time,
so that, whenever the RAM page is switched, the complete new page is displayed in
the RAM Window; any changes made on the RAM Window (or on the Watch
window) affect only the actual page. As there is no way to declare different Symbols
for the different pages, their names remain the same, independently of the page
actually selected.

9.1.2. Debouncers and Pulldowns/Pullups

These features are not available on the simulator

9.1.3. Prescaler Inhibition

This feature is not available on the simulator

9.1.4. Emulation restriction

The fact that the Interrupt status registers are reset when read becomes a problem
at emulation time. Whenever the emulator stops (breaks), the IDE reads and
uploads the contents of all registers and RAM positions from the Emulator Module
and so the contents of all IRQ Registers are always rested under this condition!

This fact could cause you problems if you have to debug the Interrupt Routine; the
right thing to do to avoid these problems is:

a) Save the contents of the IRQ Registers at the beginning of the Interrupt Routine
or as soon as possible.

b) don’t put breakpoints before this Save has been done

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 94 www.emmicroelectronic.com

9.2. Detailed Description
The peripheral interface module for the EM6533 is shown below.

Fig. 9-1. Peripheral interface for the EM6533 microcontroller

9.2.1. Port 1

Port 1 is an input port with special interrupt sources. The state of port 1 is indicated
by the circular LED’s as well as the push buttons and can have values as shown in
Table 9-1.

LED state Button State

 Red H Port high

 Yellow L Port low
Table 9-1 Possible input port states

to change the state of the port click on the corresponding button.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 95 www.emmicroelectronic.com

The state of the interrupt mask for port 1 is shown next to the button.
The possible interrupt mask states (for any ports with interrupt capabilities) are
shown in Table 9-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

 Interrupt generated on both edges

 Interrupt generated by change in rotation direction

 Interrupt generated by M-signal
Table 9-2 Representation of possible IRQ mask states.

Rotation detection and M-Signal interrupts are special ones in that they are
generated as a combined result of bits 0 and 1 and this is shown by means of the
rectangular frame surrounding the IRQ symbols for these bits
(see 2).

9.2.2. Port 2

Port 2 is an input port with only one general Interrupt (Positive edge « ored »). The
state of port 1 is shown by the LED’s and can be changed by depressing the
Buttons. See Table 9-1.

9.2.3. Port 3

Port 3 is a block select input/output Port with no Interrupt generating capabilities.
Bits 0 to 2 are block select as Input or Output (RegPIOCntl-0) and Bit 3 is
undependable select as Input or Output (RegPIOCntl-2). The possible states of Port
3 are shown in Table 9-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low
Table 9-3 Possible states for input output port.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 96 www.emmicroelectronic.com

9.2.4. Port 4

Port 4 is very similar to Port 3. Bits 0 to 2 are block select as Input or Output
(RegPIOCntl-1) and Bit 3 is undependable select as Input or Output (RegPIOCntl-
3). The possible states of Port 4 are shown in Table 9-3

9.2.5. Port 5

Port 5 is a general, bit select, input/output Port with no Interrupt capabilities. The
direction of each bit is programmable by means of RegP5Cntl.). The possible states
of Port 5 are shown in Table 9-3.

Port 5 can also function as Serial Port.

9.2.6. Serial Interface

If RegSIOCntl-1 is « 1 », then Port 5 will function as Serial Interface (SIO). In this
case, the names of the bits change to those shown in

Fig. 9-2 and explained in Table 9-4.
Note: For a more detailed description of the different Port Serial modes, consult your
Controller Manual

Fig. 9-2. Port 5 configured as Serial Port

Port-bit Function Possible states

 IN Serial Data In Input

RDY Status - Chip select (bit 2 reg.054H) Output

OUT Serial Data Out Output

CLK Serial Clock Output in master mode

Input in slave mode

Table 9-4 Serial port states

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 97 www.emmicroelectronic.com

9.2.7. Prescaler

The different IRQ possibilities generated by the Prescaler are shown on the IO-Panel
(see 2). The symbol indicates that the interrupt mask is active and the symbol
indicates that the interrupt mask is inactive.

9.2.8. Watchdog

Function Possible states

Watchdog Disabled
 Enabled

Table 9-5 Watchdog configuration

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 98 www.emmicroelectronic.com

9.2.9. Timer 1

The different functioning modes of Timer 1 are shown in Table 9-6

Parameter Signification Possible values

Enabled the timer is active (counting) Disabled
 Enabled

IRQCount0 Interrupt when count arrives to 0 Disabled
 Enabled

Zero Stop Zero Stop Mode Disabled
 Enabled

Synchronous Synchronous Mode Disabled
 Enabled

Auto Reload Auto Reload Mode Disabled
 Enabled

Input XXHz Input Clock selection Value in Hz

Start Val. Start Value of the timer Any 4 Bit value

Table 9-6 Timer1 parameters and possible states

9.2.10. Timer 2

Timer 2 is very similar to Timer 1, except that Timer 2 has no Synchronous Mode.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 99 www.emmicroelectronic.com

9.2.11. Melody Generator

The different settings for melody generation are shown on Table 9-7. :

Parameter Signification Possible values

Melody enabled Buzzer output activated Disabled
 Enabled

XX Hz Output Output frequency value in Hz practically any
value, calculated
as
65536/(1Data+1)

Envelope enable Tone decay envelope Disabled
 Enabled

 if no Envelope selected, the
picture will be

 if long Envelope selected, the
picture will be

 if short Envelope selected, the
picture will be

Table 9-7. Melody generator parameters and possible states

1 Data is the contents of RegFGLo and RegFGHi together

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 100 www.emmicroelectronic.com

10. EM6540
The peripheral interface module for the EM6540 is shown below.

Fig. 10-1 Peripheral interface for the EM6540 microcontroller
10.1. Port A

Port A is an input port with individual maskable interrupts. The state of port A
(address 054H) is indicated by the by the circular LED’s as well as the push buttons
and can have values shown in Table 11-1.

LED state Button State

 Red H Port high

 Yellow L Port low

Table 10-1 Possible input port states

to change the state of the port click on the corresponding button.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 101 www.emmicroelectronic.com

The state of the interrupt mask for port A (address 062H) is shown next to the
button. The possible interrupt mask states are shown in Table 11-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 10-2 Representation of possible IRQ mask states.

10.2. Port B
Port B is a bitwise select input output port. The state of port B (address 056H) is
shown by the LED and buttons. When the port is input the state can be changed
using the corresponding push buttons. When the port is set to output (address 076H)
the button is set to NC (not connected) and the LED indicates the state of the output
port. Consequently the possible combinations for the LED and button states are
shown in Table 11-3.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 10-3 Possible states for input output port.

10.3. Port C
Port C is similar to Port B when used as general I/O Port, but it can also overtake the
signals of the SWB, as explained below.

10.4. Serial Write Buffer (SWB)

Fig. 10-2. Representation of the SWB on the IO-Panel

When the Serial Write Buffer is enabled, Port C-bit 0 overtakes the Clock Signal and
Port C-bit 1 the Data Signal of the SWB.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 102 www.emmicroelectronic.com

On the IO-Panel, there is a region dedicated specially to the SWB, where the Clock
and Data Signals are represented once more (duplicated against the normal Port C
representation).

Additional information available on the IO-Panel is the following:

• Mode (Automatic/Interactive)

• Clock (external/internal and division factor)

• Clock suppression (how many bits are suppressed)

• The data being sent: each nibble already sent will appear (from left to right) on
the text box (in hex representation).

Note : it is important to emphasise that this represented value reflects the
suppression of clocks ; for instance, in the example shown on fig 10-2, although the
buffered data was ‘C,A,B’ , the transmitted data is actually considered to be ‘C,A,3’,
because the last clock is suppressed !

10.5. Prescaler
The selected prescaler interrupt frequency is indicated. This corresponds to the
value written to bits 1- 3 in the register 062H.

10.6. Timer

Fig. 10-3 Timer parameters

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 103 www.emmicroelectronic.com

The following parameters are defined for the 8-bit timer module.

Parameter Meaning Possible values

Enabled Timer enabled (bit 3 reg. 05EH) Disabled
 Enabled

IRQCount0 IRQ mask active for Count 0
event (bit 1 reg. 064H)

 Disabled
 Enabled

IRQComp IRQ mask active for compare
event (bit 0 reg. 064H)

 Disabled
 Enabled

PWM Pulse width modulation output to
port B3 (bit 3 reg. 06BH)

 Disabled
 Enabled

EnComp Compare function enabled
(bit 1 reg. 05EH)

 Disabled
 Enabled

Input Input clock for counter Port A0
Port A3
300KHz
37.5KHz
4688Hz
586Hz
9.2Hz
1.1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Start Val Initial Value 0 - 3FF

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. Bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 10-4 Timer parameters values

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 104 www.emmicroelectronic.com

10.7. Supply level detection
It is possible to simulate changes in the supply level from 0V to 5V with the use of
the scroll bar. The minimum precision is 0.01V, although steps of 0.1V can be
obtained using the page-up and page down function keys. It should be noted that
reducing the supply voltage to 0V would not stop the software simulation of the
microcontroller.

10.8. EEPROM
The contents of the internal EEPROM of the EM6640 are shown in the EEPROM
section. The data is in hexadecimal format and is read only.

10.9. Sys.Clk.Adj.
Shows the 6-bit configuration (OscAdj [0] to OscAdj [5]) contained in register
OPTOscAdj and OPTPaRST. These bits are used to « trim » the chip’s RC
oscillator. The simulated controller only displays the status of this trimming, but, as it
is not « real time », its speed is not affected.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 105 www.emmicroelectronic.com

11. EM6580
The peripheral interface module for the EM6580 is shown below.

Fig. 11-1 Peripheral interface for the EM6580 microcontroller

11.1. Port A
Port A is a bitwise select input output port excepted PA4 always in input mode. The
state of port A (address 050H and address 060H) is shown by the LED and buttons.
When the port is input the state can be changed using the corresponding push
buttons. When the port is set to output (address 051H and address 060H) the button
is set to NC (not connected) and the LED indicates the state of the output port.
Consequently the possible combinations for the LED and button states are shown in
Table11-1.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 11-1 Possible states for input output port.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 106 www.emmicroelectronic.com

Port A ,when configured in input, has individual maskable interrupts on PA0, PA3,
PA4, PA5. The state of the interrupt mask for port A (address 067H) is shown next to
the button. The possible interrupt mask states are shown in Table 11-2.

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 11-2 Representation of possible IRQ mask states.

11.2. Prescaler
The states of the 1Hz, 8Hz or 64Hz interrupt masks are shown in Fig The symbol
indicates that the interrupt mask is active and the symbol indicates that the
interrupt mask is inactive. The interrupt frequency 8Hz or 64 Hz is display based on
the selection (address 06CH) Bit 1.

Fig. 11-2 Prescaler

11.3. Timer

Fig. 11-3 Timer parameters

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 107 www.emmicroelectronic.com

The following parameters are defined for the 8-bit timer module.

Parameter Meaning Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQCount0 IRQ mask active for Count 0
event (bit 3 reg. 065H)

 Disabled
 Enabled

IRQComp IRQ mask active for compare
event (bit 2 reg. 065H)

 Disabled
 Enabled

PWM Pulse width modulation output to
port A 0 or 1 (bit 0 and1 reg. 61H)

 Disabled
 Enabled

EnComp Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input clock for counter Port A1
Port A3/4
RC/2
RC/4
16KHz
2KHz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Start Val Initial Value 0 - 3FF

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. Bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 11-3 Timer parameters values

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 108 www.emmicroelectronic.com

11.4. Port A in serial mode
The Port A can be defined as a serial port. For a serial mode configuration, the ports
have the following attributions

Port Function Possible states

 In Serial Data In PA0 Input

Clk Serial Clock PA1 Output in master mode

Input in slave mode

Out Serial Data Out PA2 Output

S Status - Chip select PA3 Output

Table 11-4 Serial port states

11.5. Supply voltage level detector and ADC mode

Fig. 11-4 SVLD and ADC selection

It is possible to simulate changes in the supply level or pin level of PortA bit 4 which
becomes marked ADC (bit 3 address073H). These changes will be operated from
0V to 5.5V with the use of the appropriate scroll bar. The minimum accuracy is
0.01V, although steps of 0.1V can be obtained using the page-up and page down
function keys. Reducing the supply voltage under 1.5V would stop the software
simulation of the microcontroller as POR emulation, Level must be increased above
2V as Power Check Level emulation. The symbol indicates that the ADC or the
continuous mode is active (bit 1 address 073H for continuous mode) and the symbol

 indicates that the ADC or the continuous mode is inactive.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 109 www.emmicroelectronic.com

11.6. Option registers
Please refer to the following table for the registers implementation:

Register RegOscTrimH @ addr. 117 decimal = 75 hex.
Bit Name Reset R/W Description

3 RegOscTrim[7] 0 R/W Not implemented

2 RegOscTrim[6] 1 R/W Not implemented

1 RegOscTrim[5] 1 R/W Not implemented

0 RegOscTrim[4] 1 R/W Not implemented

Table 11-5 RegOscTrimH

Register RegOscTrimL @ addr. 118 decimal = 76 hex.
Bit Name Reset R/W Description

3 RegOscTrim[3] 1 R/W Not implemented

2 RegOscTrim[2] 1 R/W Not implemented

1 RegOscTrim[1] 1 R/W Not implemented

0 RegOscTrim[0] 1 R/W Not implemented

Table 11-6 RegOscTrimL

Register RegMFP0 @ addr. 121 decimal = 79 hex.
Bit Name Reset R/W Description

3 Opt[3] 0 R/W Not implemented

2 Opt[2] 0 R/W Must be kept to “0”

1 Opt[1] 0 R/W Counter Clock source 7 selection

"0" PA3/PA4, "1" RCclk/2

0 Opt[0] 0 R/W Not implemented

Table 11-7 RegMFP0

Note1. bit1: When Opt[1]=1 the clock of the counter is no more ck16 (32kHz/50kHZ) but the CPU clock in order to achieve a
correct sampling of the RCclk/2 signal.

Register RegMFP1 @ addr. 122 decimal = 7A hex.
Bit Name Reset R/W Description

3 Opt[7] 0 R/W RC base frequency (32/50 kHz) selection.

2 Opt[6] 0 R/W RC frequency selection bit 2

1 Opt[5] 0 R/W RC frequency selection bit 1

0 Opt[4] 0 R/W RC frequency selection bit 0

Table 11-8 RegMFP1

Register RegMFP2 @ addr. 123 decimal = 7D hex.
Bit Name Reset R/W Description

3 Opt[11] ? R/W

2 Opt[10] ? R/W

1 Opt[9] ? R/W

0 Opt[8] 0 R/W ADC/SVLD voltage level#15: "0" 2.75v, "1" 3v

Table 11-9 RegMFP2

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 110 www.emmicroelectronic.com

12. EM6680
The peripheral interface module for the EM6680 is shown below.

Fig. 12-1 Peripheral interface for the EM6680 microcontroller

12.1. Port A
Port A is a bitwise select input output port excepted PA4 always in input mode. The
state of port A (address 050H and address 060H) is shown by the LED and buttons.
When the port is input the state can be changed using the corresponding push
buttons. When the port is set to output (address 051H and address 060H) the button
is set to NC (not connected) and the LED indicates the state of the output port.
Consequently the possible combinations for the LED and button states are shown in
Table 12-1.

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 12-1 Possible states for input output port.

Port A ,when configured in input, has individual maskable interrupts on PA0, PA3,
PA4, PA5. The state of the interrupt mask for port A (address 067H) is shown next to
the button. The possible interrupt mask states are shown in Table 12-2.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 111 www.emmicroelectronic.com

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 12-2 Representation of possible IRQ mask states.

12.2. Prescaler
The states of the 1Hz, 8Hz or 64Hz interrupt masks are shown in Fig12-2 The
symbol indicates that the interrupt mask is active and the symbol indicates that
the interrupt mask is inactive. The interrupt frequency 8Hz or 64 Hz is display based
on the selection (address 06CH) Bit 1.

Fig. 12-2 Prescaler

12.3. Timer

Fig. 12-3 Timer parameters

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 112 www.emmicroelectronic.com

The following parameters are defined for the 8-bit timer module.

Parameter Meaning Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQCount0 IRQ mask active for Count 0
event (bit 3 reg. 065H)

 Disabled
 Enabled

IRQComp IRQ mask active for compare
event (bit 2 reg. 065H)

 Disabled
 Enabled

PWM Pulse width modulation output to
port A 0 or 1 (bit 0 and1 reg. 61H)

 Disabled
 Enabled

EnComp Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input clock for counter Port A1
Port A3/4
RC/2
RC/4
16KHz
2KHz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Start Val Initial Value 0 - 3FF

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. Bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits

Table 12-3Timer parameters values

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 113 www.emmicroelectronic.com

12.4. Port A in serial mode
The Port A could be defined as a serial port. For a serial mode configuration, the
ports have the following attributions

Port Function Possible states

 In Serial Data In PA0 Input

Clk Serial Clock PA1 Output in master mode

Input in slave mode

Out Serial Data Out PA2 Output

S Status - Chip select PA3 Output

Table 12-4Serial port states

12.5. Supply voltage level detector and ADC mode

Fig. 12-4 SVLD and ADC selection

It is possible to simulate changes in the supply level or pin level of PortA bit 4 which
becomes marked ADC (bit 3 address073H). These changes will be operated from
0V to 3.6V with the use of the appropriate scroll bar. The minimum accuracy is
0.01V, although steps of 0.1V can be obtained using the page-up and page down
function keys. Reducing the supply voltage under 1.05V would stop the software
simulation of the microcontroller as POR emulation, Level must be increase above
1.25V / 1.85V as Power Check Level emulation. The symbol indicates that the
ADC or the continuous mode is active (bit 1 address 073H for continuous mode) and
the symbol indicates that the ADC or the continuous mode is inactive.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 114 www.emmicroelectronic.com

12.6. Metal Mask Options

Fig. 12-5 MOpt display

The Metal Mask Options are displayed on the MOpt display, (Periphery interface
window). These options can only be modified by editing the .prj file of the project.
During the modification of the .prj file, the project and the simulator must be closed.

12.6.1. View of an edited .prj file

The last line corresponds to the Metal Mask Options; the different options are
defined in the following table:

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 115 www.emmicroelectronic.com

12.6.2. Options table

Bit Field BIT 7 to 4 Bit 3 Bit 2 Bit 1 Bit 0
MOpt 0 No Effect No Effect No Effect Counter Clock

source 7 selection

0 = PA3/PA4

1 = RC/2

No Effect

MOpt 1 No Effect RC base selection

0 = 32kHz

1 = 50kHz

RC Frequency
selection 2

Refer to chapter
15.1 of the EM6580
datasheet

RC Frequency
selection 1

Refer to chapter
15.1 of the EM6580
datasheet

RC Frequency
selection 0

Refer to chapter
15.1 of the EM6580
datasheet

MOpt 2 No Effect No Effect No Effect No Effect SVLD level15
selection

0 = 2.75V

1 = 3V

MOpt 3 No Effect No Effect No Effect No Effect Power check
selection

0 = level 5 as 2.75v

1 = level 9 as 3V

Table 12-5Serial port states

After options definition, the .prj file must be saved and the projects re-opened. All the
selected options will be updated into the MOpt display.

12.6.3. Metal mask options example

On the fig. 12.6, the selected options are :

MOpt0 = 0x00 => Counter Clock source 7 as PA3/PA4.

MOpt1 = 0x02 => Rc frequency selected is 128kHz.

MOpt2 = 0x00 => ADC/SVLD LEVEL 15 as 2.75V

MOpt3 = 0x01 => Power Check level 9 as 1.85V

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 116 www.emmicroelectronic.com

13. EM6682
The peripheral interface module for the EM6682 is shown below.

Fig. 13-1 Peripheral interface for the EM6682 microcontroller

13.1. Port A
Port A is a bitwise select input output port excepted PA4 always in input mode. The
state of port A (address 050H and address 060H) is shown by the LED and buttons.
When the port is input the state can be changed using the corresponding push
buttons. When the port is set to output (address 051H and address 060H) the button
is set to NC (not connected) and the LED indicates the state of the output port.
Consequently the possible combinations for the LED and button states are shown in
Table 13.1

LED state Button State

 Red H Port input and high

 Yellow L Port input and low

 Red NC Port output and high

 Yellow NC Port output and low

Table 13-1 Possible states for input output port.

Port A ,when configured in input, has individual maskable interrupts on PA0, PA3,
PA4, PA5. The state of the interrupt mask for port A (address 067H) is shown next to
the button. The possible interrupt mask states are shown in Table 13.2.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 117 www.emmicroelectronic.com

Symbol State

 Interrupt generated on the falling edge of the port

 Interrupt generated on the rising edge of the port

 Interrupt disabled

Table 13-2 Representation of possible IRQ mask states.

13.2. Prescaler
The states of the 1Hz, 8Hz or 64Hz interrupt masks are shown in Fig 13-2. The
symbol indicates that the interrupt mask is active and the symbol indicates that
the interrupt mask is inactive. The interrupt frequency 8Hz or 64 Hz is display based
on the selection (address 06CH) Bit 1.

Fig. 13-2 Prescaler

13.3. Timer

Fig. 13-3 Timer parameters

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 118 www.emmicroelectronic.com

The following parameters are defined for the 8-bit timer module.

Parameter Meaning Possible values

Enabled Timer enabled (bit 3 reg. 05CH) Disabled
 Enabled

IRQCount0 IRQ mask active for Count 0
event (bit 3 reg. 065H)

 Disabled
 Enabled

IRQComp IRQ mask active for compare
event (bit 2 reg. 065H)

 Disabled
 Enabled

PWM Pulse width modulation output to
port A 0 or 1 (bit 0 and1 reg. 61H)

 Disabled
 Enabled

EnComp Compare function enabled
(bit 1 reg. 05CH)

 Disabled
 Enabled

Input Input clock for counter Port A1
Port A3/4
RC/2 or RC
RC/4 or RC/2
16KHz
2KHz
512Hz
128Hz
8Hz
1Hz

Step Direction of counting +1 = Upward
counting
-1 = downward
counting

Start Val Initial Value 0 - 3FF

Comp. Val Reference value used in compare
function

0 - 3FF

Comp. Bits Number of bits to be used in the
compare function.

10, 8, 6, 4 bits or
9,7,5,3 bits

Table 13-3Timer parameters values

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 119 www.emmicroelectronic.com

13.4. Port A in serial mode
The Port A could be defined as a serial port. For a serial mode configuration, the
ports have the following attributions

Port Function Possible states

 In Serial Data In PA0 Input

Clk Serial Clock PA1 Output in master mode

Input in slave mode

Out Serial Data Out PA2 Output

S Status - Chip select PA3 Output

Table 13-4 Serial port states

13.5. Supply voltage level detector and ADC mode

Fig. 13-4 SVLD and ADC selection

It is possible to simulate changes in the supply level or pin level of PortA bit 4 which
becomes marked ADC (bit 3 address073H). These changes will be operated from
0V to 3.6V with the use of the appropriate scroll bar. The minimum accuracy is
0.01V, although steps of 0.1V can be obtained using the page-up and page down
function keys. Reducing the supply voltage under 1.05V would stop the software
simulation of the microcontroller as POR emulation, Level must be increase above
1.25V / 1.85V as Power Check Level emulation. The symbol indicates that the
ADC or the continuous mode is active (bit 1 address 073H for continuous mode) and
the symbol indicates that the ADC or the continuous mode is inactive.

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 120 www.emmicroelectronic.com

13.6. Option registers
Please refer to the following table for the registers implementation:

Register RegOscTrimH @ addr. 117 decimal = 75 hex.
Bit Name Reset R/W Description

3 RegOscTrim[7] 0 R/W Not implemented

2 RegOscTrim[6] 1 R/W Not implemented

1 RegOscTrim[5] 1 R/W Not implemented

0 RegOscTrim[4] 1 R/W Not implemented

Table 13-5 RegOscTrimH

Register RegOscTrimL @ addr. 118 decimal = 76 hex.
Bit Name Reset R/W Description

3 RegOscTrim[3] 1 R/W Not implemented

2 RegOscTrim[2] 1 R/W Not implemented

1 RegOscTrim[1] 1 R/W Not implemented

0 RegOscTrim[0] 1 R/W Not implemented

Table 13-6 RegOscTrimL

Register RegMFP0 @ addr. 121 decimal = 79 hex.
Bit Name Reset R/W Description

3 Opt[3] 0 R/W Not implemented

2 Opt[2] 0 R/W Must be kept to “0”

1 Opt[1] 0 R/W Counter Clock source 7 selection

"0" PA3/PA4, "1" RCclk/2

0 Opt[0] 0 R/W Not implemented

Table 13-7 RegMFP0

Note1. bit1: When Opt[1]=1 the clock of the counter is no more ck16 (32kHz/50kHZ) but the CPU clock in order to achieve a
correct sampling of the RCclk/2 signal.

Register RegMFP1 @ addr. 122 decimal = 7A hex.
Bit Name Reset R/W Description

3 Opt[7] 0 R/W RC base frequency (32/50 kHz) selection.

2 Opt[6] 0 R/W RC frequency selection bit 2

1 Opt[5] 0 R/W RC frequency selection bit 1

0 Opt[4] 0 R/W RC frequency selection bit 0

Table 13-8 RegMFP1

Register RegMFP2 @ addr. 123 decimal = 7D hex.
Bit Name Reset R/W Description

3 Opt[11] ? R/W

2 Opt[10] ? R/W

1 Opt[9] ? R/W

0 Opt[8] 0 R/W ADC/SVLD voltage level#15: "0" 2.75v, "1" 3v

Table 13-9 RegMFP2

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 121 www.emmicroelectronic.com

13.7. Metal Mask Options

Fig. 13-5 MOpt display

The Metal Mask Options are displayed on the MOpt display, (Periphery interface
window). These options can only be modified by editing the .prj file of the project.
During the modification of the .prj file, the project and the simulator must be closed.

13.7.1. View of an edited .prj file

The last line corresponds to the Metal Mask Options; the different options are
defined in the following table:

EM66xx
Peripheral Interface

Copyright © 2005 EM Microelectronic-Marin SA 122 www.emmicroelectronic.com

13.7.2. Options table

Bit Field BIT 7 to 4 Bit 3 Bit 2 Bit 1 Bit 0
MOpt 3 Counter

clock update

0 = RC / 2

1 = RC

Power check actif

0 = only at POR

1 = All Reset

SVLD Level
selection

0 = EM6680

1 = EM6681

Timer bit 0 don’t care

0 = 10 bits counter

1 = 9 bits counter

Power check
selection

0 = level 5 as 2.75v

1 = level 9 as 3V

Table 13-10Serial port states

After options definition, the .prj file must be saved and the projects re-opened. All the
selected options will be updated into the MOpt display.

13.7.3. Metal mask options example

MOpt3 = 0x11 => Power Check level 9 as 1.85V, counter clock update as RC

Copyright © 2005, EM Microelectronic-Marin SA 123 www.emmicroelectronic.com

EM MICROELECTRONIC - MARIN SA

EM66xx Microcontroller

LCD Editor Module

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 124 www.emmicroelectronic.com

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 125 www.emmicroelectronic.com

CONTENTS

1. LCD SIMULATION.. 127

2. DEFINING AN LCD CONFIGURATION... 128
2.1. DEFINING THE LCD SIZE AND POSITION ... 128
2.2. INSERTING A NEW SEGMENT.. 128
2.3. SELECTING SEGMENTS... 129
2.4. DELETING AN EXISTING SEGMENT.. 129
2.5. EDITING SEGMENT PARAMETERS ... 129
2.6. SEGMENT ALLOCATION ... 131
2.7. SEGMENT ALLOCATION REPORT .. 133
2.8. EDITING ADVICES... 136
2.9. SAVING LCD CONFIGURATIONS... 136
2.10. LOADING LCD CONFIGURATIONS... 136

3. EDITING KEYS ... 137
3.1. CHANGING SELECTION.. 137
3.2. WHOLE DISPLAY... 137
3.3. ZOOM FUNCTIONS .. 137
3.4. SEGMENTS .. 138

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 126 www.emmicroelectronic.com

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 127 www.emmicroelectronic.com

1. LCD Simulation

The application LCDEDIT allows the definition of virtual LCD displays for use with
the EM 4bit Microcontroller Development System simulation tools. These virtual LCD
displays can be customised to the specific needs of the applications and
consequently allows the complete testing of the software with the simulation tools. In
addition this tool allows the evaluation of LCD prototypes as well as the development
of software before the existence of the actual display.

When simulating a microcontroller that has an LCD the simulation module of the
microcontroller searches the current project directory for a LCD configuration file
(*.CFG) that has the same name as the project definition file. If this LCD
configuration file cannot be found then the default LCD configuration file for the
target microcontroller will be used. The LCD configuration file contains the
information necessary for the display of the LCD. This includes parameters such as
the initial position of the display on the screen, the size of the display and the size
and position of each segment within the display. Each defined segment is assigned a
segment address and data bit, as well as a bitmap, which defines the active state of
the segment. Segment address/data bit and Segment/ backplane (COM) indexes
have a one to one mapping (except that segment addresses are zero based while
segment indexes are 1 based) for default segment allocation. For free segment
allocation, each Segment/backplane index can be allocated freely whitin the
μController’s LCD address space (refer to μC specification). One bitmap may be
assigned to several segments thus reducing the amount of time spent editing the
bitmaps. In addition several segments may be assigned identical segment and
backplane indexes.

The following document describes how to use the application LCDEDIT to define a
virtual LCD display.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 128 www.emmicroelectronic.com

2. Defining an LCD configuration

2.1. Defining the LCD size and position
When the LCDEDIT application is started the default configuration is loaded. The
default display defines only the initial and size and position of the display in the
simulator and doesn’t contain any segment definitions. When the LCD frame is the
selected object its outline is shown in red. In this state the size and position can be
modified by either dragging the display with the left mouse button down using the
arrows to position the display and ctrl + arrows to resize the display (see section 3.2
for complete key definitions) .

Figure 1 LCD editor view

In addition the size and position of the display can be defined by selecting the
general option in the parameters menu as shown below.

Figure 2. Definition of LCD size and position

2.2. Inserting a new segment
To insert a new LCD segment use the « Insert » key of the keyboard. This inserts a
segment at position 0,0 of the display and selects the new segment as the currently
active object (outline shown in green). The segment parameters can now be edited
by either double clicking on the segment or by using the segments option in the
parameters menu.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 129 www.emmicroelectronic.com

Figure 3 Editor's view with defined segments

2.3. Selecting Segments
A segment can be selected as the current object to be edited by either clicking on
the segment with the left mouse button or using the «TAB » key.

2.4. Deleting an existing segment
A segment definition can be deleted by selecting the segment to be deleted with the
mouse or the tab key and using the « delete » key. The segment definition as well as
the reference to the bitmap is the deleted from the configuration. The bitmap file
associated with the segment is however not deleted.

2.5. Editing segment parameters
When a segment is selected as the active object its outline is shown in green. The
size and position the selected segment can be modified either with the mouse or by
the keyboard as described in section 3.4. All the segment parameters can also be
edited by either double clicking on the segment or by using the segments option in
the parameters menu. The segment parameters dialogue box is shown below.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 130 www.emmicroelectronic.com

Figure 4 LCD segment parameter definition

The existing segments are displayed in the list box on the left of the dialogue box.
The current selected segment is highlighted by default. Once the segment is
selected in the listbox its parameters can be modified using the edit fields on the
right of the dialogue box. The parameters are the following.

Position parameters

X The X (horizontal) co-ordinate of the segment in logical screen
 units (X=0 is the left of the screen).

Y The Y (vertical) co-ordinate of the segment in logical screen units
 Y=0 is the top of the screen.

Width The width in logical screen units of the segment

Height The height in logical screen units of the segment

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 131 www.emmicroelectronic.com

Segment Allocation

Address The segment address (zero based)

Bit Select the data bit associated with the segment

Segment address/data bit are used by the program to drive the LCD segment.

Segment Bitmap Enter the filename of the bitmap that will be used to
 represent the segment. The Browse button can be used to
 select the file name.

The actual bitmap used to represent the segment can be produced by any graphical
editing tool. However, only monochrome or 16 colour bitmaps are supported at
present. During display in the simulation tool the bitmap will be either stretched or
shrunk to fill the area defined for the segment.

Functions

New Inserts a new segment

Del Deletes the currently selected segment

Sort Sorts the segments in segment/backplane indexes order
 When using free segment allocation (see below), sorting
 the segments may completely change the allocation.
 Versions of the LCD editor prior to 1.3 sorted the segment
 each time the configuration was saved.

Exit Exit the dialogue box

2.6. Segment allocation
From version 1.3 of the LCD editor, it is possible to define free segment allocation.

For each segment/backplane an address/data-bit can be freely defined within the
LCD address space to drive the segment. This is done by defining for each
segment/backplane an index in the segments defined in the ‘Segment definition’
dialog.

The following dialog allows the segment allocations.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 132 www.emmicroelectronic.com

Figure 5 Segment allocation dialog

The number of segments as well as the multiplexer parameters can be defined. The
‘Default Allocation’ check box is unchecked for free segment allocation. The list box
displays for each segment/backplane the address/data-bit which drive the segment.
An asterix ‘*’ besides the definition (as in [2:0]*) indicates that the
segment/backplane was not allocated an address/data-bit and thus the default
allocation is used for this segment/backplane allocation. An index as in ‘ 49 *’
indicates that the index defined for the allocation is no more valid (ie the segment
has been deleted).

To define one segment/backplane allocation: chek the appropriate [com] in the
COMs group-box and double-click on a Seg [seg] line in the list box and select a
segment from the ‘Segment definition’ dialog which is displayed then dismiss the
‘Segment definition’ dialog using ‘Exit’. At this point the allocation is updated in the
list box.

By clicking ‘Index list’ button, it is possible to display the segment allocation in the
index view as follow:

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 133 www.emmicroelectronic.com

Figure 6 Segment allocation (index view)

A [-1] indicates that the segment/backplane was not allocated an address/data-bit
and thus the default allocation is used for this segment/backplane allocation.

2.7. Segment allocation report
It is possible to generate a report on the segment allocation by clicking the Report
button. The report is generated and displayed in a ‘Segment Allocation Report’
dialog, which allows to view the report and to save it. The report is saved in the
application directory with filename ‘app-name.txt’.

The following listing shows a report for a free segment allocation.

 10:06:30 02/05/98
 Segment allocation report for LCDDOC

 Segments: 10
 Multiplexer: 4
 Free segment allocation

 Segment allocation table (addresses)

 COM[0] COM[1] COM[2] COM[3]
 Seg [1] [1:2] [1:1] [0:2] [0:3]
 Seg [2] [1:0] [1:1] [1:2] [1:3]
 Seg [3] [2:0] [2:1] [2:2] [2:3]
 Seg [4] [3:0]*[3:1]*[3:2]*[3:3]*
 Seg [5] [4:0]*[4:1]*[4:2]*[4:3]*

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 134 www.emmicroelectronic.com

 Seg [6] [5:0]*[5:1]*[5:2]*[5:3]*
 Seg [7] [6:0]*[6:1]*[6:2]*[6:3]*
 Seg [8] [7:0]*[7:1]*[7:2]*[7:3]*
 Seg [9] [8:0]*[8:1]*[8:2]*[8:3]*
 Seg [10] [9:0]* 49 *[9:2]*[9:3]*

 Segment allocation table (indexes)

 COM[0] COM[1] COM[2] COM[3]
 Seg [1] [6] [5] [2] [3]
 Seg [2] [4] [5] [6] [7]
 Seg [3] [8] [9] [10] [11]
 Seg [4] [-1] [-1] [-1] [-1]
 Seg [5] [-1] [-1] [-1] [-1]
 Seg [6] [-1] [-1] [-1] [-1]
 Seg [7] [-1] [-1] [-1] [-1]
 Seg [8] [-1] [-1] [-1] [-1]
 Seg [9] [-1] [-1] [-1] [-1]
 Seg [10] [-1] [49] [-1] [-1]

 Segment definition report

 Segments: 32

 Seg Add:Bit X / Y W / H Bitmap
 0 [0:0] 146/108 10/ 10 SEG0.BMP
 1 [0:1] 135/ 66 15/ 15 SEG1.BMP
 ...
 31 [7:3] 17/ 3 10/ 10 SEG15.BMP

 Consistency chek

 [9:1] no segment defined
 [9:2] no segment defined
 [9:3] no segment defined
 [9:4] no segment defined
 [10:1] no segment defined
 [10:2] index to segment list invalid
 [10:3] no segment defined
 [10:4] no segment defined

 segment index: 0 not used
 segment index: 1 not used

The consistency check reports are:

‘[9:1] not segment defined’:
indicates that the address specified for segment:9/com:1 ([8:0] default value) is not
defined in any segment.

‘[10:2] index to segment list invalid’:
indicates that the specified index is not valid (the segment has been deleted).

‘segment index: 0 not used’:
indicates the segment 0 is not used.

A similar report can be generated for configuration with default allocation.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 135 www.emmicroelectronic.com

 10:18:15 02/05/98
 Segment allocation report for LCDDOC

 Segments: 10
 Multiplexer: 4
 Default segment allocation

 Segment allocation table (addresses)

 COM[0] COM[1] COM[2] COM[3]
 Seg [1] [0:0] [0:1] [0:2] [0:3]
 Seg [2] [1:0] [1:1] [1:2] [1:3]
 Seg [3] [2:0] [2:1] [2:2] [2:3]
 Seg [4] [3:0] [3:1] [3:2] [3:3]
 Seg [5] [4:0] [4:1] [4:2] [4:3]
 Seg [6] [5:0] [5:1] [5:2] [5:3]
 Seg [7] [6:0] [6:1] [6:2] [6:3]
 Seg [8] [7:0] [7:1] [7:2] [7:3]
 Seg [9] [8:0] [8:1] [8:2] [8:3]
 Seg [10] [9:0] [9:1] [9:2] [9:3]

 Segment definition report

 Segments: 32

 Seg Add:Bit X / Y W / H Bitmap
 0 [0:0] 146/108 10/ 10 SEG0.BMP
 1 [0:1] 135/ 66 15/ 15 SEG1.BMP
 ...
 31 [7:3] 17/ 3 10/ 10 SEG15.BMP

 Consistency chek

 [1:2] multiple definitions
 at index: 1
 at index: 2
 [1:3] not defined
 [9:1] not defined
 [9:2] not defined
 [9:3] not defined
 [9:4] not defined
 [10:1] not defined
 [10:2] not defined
 [10:3] not defined
 [10:4] not defined

The consistency check reports are:

‘[1:2] multiple definitions
 at index: 1
 at index: 2’:
indicates that address/data-bit for segment/com [1:2] is defined for segments with
index 1 and 2

‘[1:3] not defined’:
indicates that the address specified for segment:1/com:3 ([0:2] default value) is not
defined in any segment.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 136 www.emmicroelectronic.com

2.8. Editing Advices
Whether you use default or free segment configuration, you should start by defining
you segments using the editor view and the ‘Segment definition’ dialog. After
defining the segments, you can proceed to the segment allocation part.

If you use default allocation, you can nevertheless specify the Segments and
Multiplexer parameters and generate a report.

If you use free segment allocation you have to define each segment allocation (as
defined above), unless the segment can use it’s default ‘address/data bit’. If you
need to add new segment or modify current segment definition be carefull no to sort
the segment (as stated above segment allocation use an index to the segments in
the ‘Segment definition’ dialog).

2.9. Saving LCD configurations
Once terminated the LCD configuration can be saved to permanent storage using
the Save option in the File menu. An existing definition can also be saved to another
name using the « Save As » option in the « File » menu. It should be noted that the
configuration file should be saved to the saved directory as the project definition of
the application and have the file extension CFG. This does not apply to the bitmap
files associated with the segments since the complete file name can be specified in
the segment definition parameters.

2.10. Loading LCD configurations
LCD configurations can be loaded for editing from either the most recently used file
list in the « File » menu or by using the « Open » option in the file menu. A LCD
definition file has the extension *.CFG.

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 137 www.emmicroelectronic.com

3. Editing Keys

3.1. Changing selection
It is possible to change the selected item by using the TAB key.

3.2. Whole display
When the LCD frame is selected (the outline is shown in red) the following keys can
be used to move and resize the display.

Function Key

Move the display left Left arrow

Move the display right Right arrow

Increase the display width Ctrl + Right arrow

Decrease the display width Ctrl + Left arrow

Move the display up Up arrow

Move the display down Down arrow

Increase the display height Ctrl + Down arrow

Decrease the display height Ctrl + Up

3.3. Zoom functions
It is possible to zoom in while editing the display. These functions are available in the
view menu or can be achieved using the following keys

Function Key

Zoom in Ctrl + numpad plus

Zoom out Ctrl + numpad minus

Zoom 1:1 Ctrl + 1 key

EM66xx
LCD Editor

Copyright © 2005, EM Microelectronic-Marin SA 138 www.emmicroelectronic.com

3.4. Segments
When a segment is selected (the outline is shown in green) the following keys can
be used to move and resize the segment

Function Key

Move the segment left Left arrow

Move the segment right Right arrow

Increase the segment width Ctrl + Right arrow

Decrease the segment width Ctrl + Left arrow

Move the segment up Up arrow

Move the segment down Down arrow

Increase the segment height Ctrl + Down arrow

Decrease the segment height Ctrl + Up

Go to next segment TAB

Copyright © 2005, EM Microelectronic-Marin SA 139 www.emmicroelectronic.com

MFP – EM65xx

Programming Interface

Manual

EM MICROELECTRONIC - MARIN SA

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 140 www.emmicroelectronic.com

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 141 www.emmicroelectronic.com

CONTENTS

1. INTRODUCTION ... 142
2. OVERVIEW ... 143
3. GETTING STARTED... 144

3.1. PROGRAMMING FROM THE PC ... 144
3.1.1. Status LED's... 144

3.2. PROGRAMMING IN STANDALONE MODE ... 145
3.2.1. Status LED's... 145

3.3. MFP PROGRAMMING BOX WITH EXTENSION CABLE. ... 146
3.3.1 EMPC65 PINOUT.. 147
3.4. SOME ADDITIONAL INFO ON MFP PROGRAMMER. .. 147
3.5. GLOBAL ORDERING REFERENCE NUMBER.. 148

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 142 www.emmicroelectronic.com

1. Introduction

The MFP programmer (called PEEPROM, too) is an EEPROM programmer
developed and intended for the EM66xx microcontroller family. It has to be
connected to a PC and communicates with a telegram-oriented protocol. The MFP
immediately interprets each telegram coming from the PC. By means of this
protocol, the PC can send orders and control the system (download data's, program
device, calculate CRC). First the data have to be downloaded from the PC to the
buffer of the programmer. In order to detect if a transmission error occurred, the PC
asks the programmer to calculate the CRC (cyclic redundancy checksum) and
checks if it fits with its own CRC. After that, the PC can either control the
programming cycles or switch the programmer in a stand-alone mode. In this state,
the MFP can be disconnected and programming is controlled by means of the
programming button. The status LED's indicate what the MFP is doing and if
programming cycle has been successfully terminated.

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 143 www.emmicroelectronic.com

2. Overview

Back pannel view

Top View

Error

Standalone
Ok
Busy

Power

Status LED's

Programming
button

Socket

Power supply

Serial interface
Connection PC

Additionnal connector

Reset

1
2

3
4

5
6

1 Vbat
2 Vreg
3 Qout
4 Test
5 Qin
6 GROUND

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 144 www.emmicroelectronic.com

3. Getting Started

1) Connect the programmer to the PC with a point-to-point cable.
2) Connect the AC Adapter (Control that the positive pole is in the center of the
connector)
3) Put the device on the socket.

3.1. Programming from the PC

1) Open the MFP Interface Window in the EM microcontroller development system..
2) Set up the parameters in the Options menu.

PORT COM2
BAUD 19200
DTR X
RTS X

BUFFERED OPTIONAL

3) Choose the correct file (Browse).
4) press Connect
5) press Download
6) If checksum master and checksum programmer are identical press Program
7) The programming is correct if the three checksums fit and no errors have been
detected.

3.1.1. Status LED's

The busy LED works during each transmission from PC to programmer and from
programmer to device.

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 145 www.emmicroelectronic.com

3.2. Programming in standalone mode

1) Open the MFP Interface Window in the EM microcontroller development system.
2) Set up the parameters in the Options menu.

PORT COM2
BAUD 19200
DTR X
RTS X

BUFFERED OPTIONAL

3) Choose the correct file (Browse).
4) press Connect
5) press Download
6) If checksum master and checksum programmer are identical select Standalone
in operating mode.
7) The programmer is ready to work alone if the standalone LED's is switch on.
8) Press programming button.

3.2.1. Status LED's

Busy LED : Works during each transmission from programmer to device.
Correct LED : Indicates that the CRC of the master fits with the CRC of the
 device. No error occurred during the programming.
Error LED : Error occurred during the programming or chip not present.

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 146 www.emmicroelectronic.com

3.3. MFP programming box with extension cable.

To ensure the correct programming of an MFP μcontroller using the extension cable
(either from side connector or from adapter socket), the following schematic has to
be used.

Vbat

Qout

Vss

Vreg

Qin

Test

Vbat

Qout, TCK, RCout or PSCK

Vss

Vreg

Qin, Rin, RCin or PSDIO

Test

Max. length: 2 m. Max. length: 20 cm .

1 2 3 4

9 8

5 6

13 12

11 10

14

7

pr
og

ra
m

m
er

M
FP

Use the Schmitt Trigger IC : HEF40106B

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 147 www.emmicroelectronic.com

3.3.1 EMPC65 pinout.

3.4. Some additional Info on MFP programmer.

40 pin DIL socket is for EM6520 only. Use EMPA65XX adapter for other devices.

Pinout for P6520 DIL40: Vbat : 39
 Vreg : 40
 Vss : 5
 Qin : 3
 Qout : 1
 Test : 29

Pin used for programming are displayed on last sheet and on additional connector of
programmer.

Correspondence for RC oscillators: QIN: RIN, RCIN or PSDIO

 QOUT: TCK, RCOUT or PSCK

6
5

4
3

2
1

EM65xx
Programming Interface

Copyright © 2005, EM Microelectronic-Marin SA 148 www.emmicroelectronic.com

3.5. Global Ordering Reference Number

Designator Reference Numbers for ordering

Programmer or Programming box EMPB65xx

Programming adaptor for EM6503 EMPA6503 SO24

Programming adaptor for EM6504 EMPA6504 SO24

Programming adaptor for EM6505 EMPA6505 SO24

Programming adaptor for EM6517 EMPA6517 SO28

Programming adaptor for EM6520 EMPA6520 TQFP44

Programming adaptor for EM6521 EMPA6521 TQFP52

Programming adaptor for EM6522 EMPA6522 TQFP64

Programming adaptor for EM6540 EMPA6540 SO18

In Circuit Programming Cable EMPC65

In-Circuit Emulator for EM66xx
EME6600

(Please also specify the circuit number)

Demo Board for EM6503 EMDB6503

Demo Board for EM6504 EMDB6504

Demo Board for EM6517 EMDB6517

Demo Board for EM6520 EMDB6520

Demo Board for EM6521 EMDB6521

Demo Board for EM6522 EMDB6522

Demo Board for EM6540 EMDB6540

Demo Board for EM6580 EMDB6580

Progamming Box

your application

max. length : 20 centimeters

PROGRAMMING
BOX

MFP PROGAMMING WIRING SCHEMATIC DIAGRAM

- The MFP's can be programmed by
 putting it into the socket located on
 the programmer.

- Use the adequate header

- To program in-curcuit, use the socket
 at the rear of the progammer

- Wire the application as shown

Qin Qout Test Vreg

VssVdd EM65xx

max. length : 2 meters

	Page 1
	Development System Manual
	1. EM66xx Microcontroller Development System
	2. Software Development System
	3. EM66xx Programming Model
	4. EM66xx Assembler Syntax
	5. Mask ROM

	Peripheral Interface Modules
	1. General
	2. EM6503 & EM6505
	3. EM6504
	4. EM6507
	5. EM6517
	6. EM6520
	7. EM6521 & EM6522
	8. EM6525 & EM6526
	9. EM6533
	10. EM6540
	11. EM6580
	12. EM6680
	13. EM6682

	LCD Editor Module
	1. LCD Simulation
	2. Defining an LCD configuration
	3. Editing Keys

	MFP - Programming Interface Manual
	 Introduction
	 Overview
	 Getting Started

	MFP Schematic

