

Ultra Low Power Capacitive Touch Sensor Interface IC

Description

The EM6420 is an ultra low power Touch Sensor Interface IC able to scan sequentially up to 16 capacitive sensors. The device parameters (number of used sensors, sensors scan frequency, sensors sensitivity level, IRQ condition) are configurable either from a host microcontroller through a communication port or through configuration inputs.

Recognised touch inputs will be signaled with an active edge at the IRQ pad and data are ready to be read through the communicaion port by the host MCU. Conditions for the IRQ to get active are configurable : at the end of every scan, at the end of a scan if at least one sensor is active or at the end of a scan if the sensors state has changed.

The EM6420 can also detect the most active sensor in applications where sensors are tightly spaced. It compares relative levels among sensors and selects the sensor with the largest signal strength.

To increase the number of sensors >16, use several EM6420 in parallel.

Depending on the selected supply voltage range, 3 or 4 decoupling capacitors are required for the entire functionality of the EM6420 from -40 to + 85°C.

Features

- Up to 16 analogue sensor inputs
- User selectable communication interfaces : 4-wire SPI, I²C, 4-bit parallel interface and 8-bit direct output
- User-selectable active edge IRQ output signal
- Active high enable input
- No software development and tuning required
- Development tools and documentations available
- Complete touch module available: IC + electrodes design on various non-conductive substrates

Electrical Characteristics

•	Supply voltage		1.2 V to 2.0 V or 2.2 to 3.6 V $$
•	Power consump Low Power Mod	tion e	8.0 µA @ 3.0 V (14.5 µA @1.5 V) for 16 sensors scanned at 8 Hz
•	Ultra Low Power Mode		2.0 μA @ 3.0 V (5.0 μA @1.5 V) for 16 sensors scanned at 8 Hz
•	Nominal sensor capacitance		3 to 31 pF
•	Sensors frequency	scan	1 Hz to 128 Hz *frequency depending on number of sensors

COM clock frequency up to 400 kHz

Availability

- Naked die
- SMT package MLF32-36-40

Typical Application in Stand Alone Mode and 8 Sensing Inputs

Typical Application with a Host MCU and 16 Sensing Inputs

Design Considerations

The EM6420 is well suited for battery and mains powered applications where the following features are important :

- Tamper proof applications
- Nice and clean designs
- Touch function to avoid buttons and keys
- Slider functions
- Hygienic issues, cleaning aspects
- Waterproof designs

Applications

- Mobile phones, cordless phones
- PDA, keyboards
- White & brown goods
- Toys
- Lighting Sliders for dimming

A COMPANY OF THE SWATCH GROU

TABLE OF CONTENTS

11 Reference 4 12 Conventions 4 12 Conventions 5 14 Conventions 5 15 FFATURES 5 16 Represent Tools 5 17 Convent Supply 5 18 Locover Supply 5 19 Pato Description 6 10 Touch modules based on EM4420 IC 6 11 Get Electrical SpecificAritons 9 12 Handing Proceedures 9 13 Interfaces 9 14 Absolute Maximum Ratings. 9 15 PAD DESCRIPTION 7 16 Induing Proceedures 9 17 Get PoR 9 18 Induing Proceedures 9 19 Get PoR 11 10 Input pade Inc 12 11 Get PoR 12 11 Bidrectional pade ICO 13 11 Bidrectional pade ICO 13 11 Bidrectional pade ICO	1.	PRE	LIMINAR	\IES	4
12 Conventions 4 3 FEATURES 5 3.1 Key elements 6 3.2 Power Supply 6 3.3 Interfaces 6 3.4 Development Tools 6 3.4 Development Tools 6 3.4 Development Tools 6 3.4 Development Tools 6 3.5 Touch modules based on EM64201C 6 4.8 BLOCK DIAGRAM. 7 7 PAD DESCRIPTION 7 6.1 Absolute Maximum Ratings. 9 6.1 Absolute Maximum Ratings. 9 6.3 Standard Operating Conditions 12 6.4 Standard Operating Conditions 12 7.6 Characteristics – Power Supply 12 8.6 Input padi COs., Cl, and LSV. 13 9.1 Absolute Maximum Ratings. 14 10.1 Duppt and IRO. 14 6.1 Bidirectional pads CIO. 14 6.1.1 Bidirectional pads CIO. 14 6.1.1		1.1	Reference	.ce	4
2. GENERAL DESCRIPTION 5 3. FEATURES 6 3.1 Key elements. 6 3.2 Diver Supply 6 3.4 Diver Supply 6 3.5 Touch modules based on EM6420 IC 6 3.6 Divers Supply 6 3.6 Touch modules based on EM6420 IC 6 4.8 BLOCK DIAGRAM 7 5. PAD DESCRIPTION 7 6. Hadding Proceedings 9 6.1 Absolute Maximum Ratings. 9 6.2 Manding Proceedings 9 6.3 Supply Voltage Configurations. 9 6.4 Stander Operating Conditions 11 6.5 DC Characteristics – Power Supply 12 6.6 POR 12 6.7 Touch Screen Interface 13 6.8 Input pade IS, Clay and LSV 13 6.9 Input pade IS, Clay and LSV 13 6.1 Bedirectional pads COC, Clay Clay 14		1.2	Convent		4
3. FEATURES 6 3.1 Key elements 6 3.2 Power Supply 6 3.3 Interfaces 6 3.4 Development Tools 6 3.4 Development Tools 6 3.4 Development Tools 6 3.4 Development Tools 6 3.5 Touch modules based on EM4420 IC 6 4.8 BLOCK DIAGRAM. 7 6.1 Absoluts Maximum Raings. 9 6.1 Absoluts Maximum Raings. 9 6.2 Handling Procedures 9 6.3 Standard Operating Conditors. 9 6.4 Standard Operating Conditors. 12 6.6 POR 12 6.7 Touch Screen Interface. 13 6.8 Input pads Cloy. Cloy. 14 6.11 Bidirectional pads Cloy. Cloy. 14 6.12 Bidirectional pads Cloy. Cloy. 14 6.13 Bidirectional pads Cloy. Cloy. 16	2.	GEN	ERAL DE	ESCRIPTION	5
3.1 Key elements. 6 3.2 Power Supply 6 3.3 Interfaces 6 3.4 Devisiopment Tools 6 3.5 Touch modules based on EM6420 IC 6 3.6 BLOCK DIAGRAM. 7 5 PAD DESCRIPTION 7 6 ELECTRICAL SPECIFICATIONS 9 6.1 Absolut Maximum Ratings 9 6.2 Handling Proceedures. 9 6.3 Supply Voltage Configurations 9 6.4 Standard Operating Conditions 11 6.5 DC Characteristics - Power Supply 12 6.6 POR 13 6.7 Touch Screen Interface 13 6.8 Input pads CICS, CL end LSV 13 6.9 Editicational pads CIO 14 6.12 Bidirectional pads CIO 16 7.4 Standard Operating Conditions 16 7.4 Stave 12C Interface 16 7.4 Stave 12C Interface 16 7.5 Stave 4Di Paralel Interface 17	3.	FEA	TURES		6
3.2 Power Supply 6.8 3.3 Development Tools 6.8 3.4 Development Tools 6.8 3.4 Development Tools 6.9 3.4 Development Tools 6.9 3.5 Touch modules based on EM6420 IC 6.6 4.8 BLOCK DIAGRAM. 7 6.9 BLOCK DIAGRAM. 7 6.1 Absolute Maximum Ratings. 9 6.1 Absolute Maximum Ratings. 9 6.1 Absolute Maximum Ratings. 9 6.3 Standard Operating Conditions. 12 6.6 POR 12 6.7 Characteristics – Power Supply 12 6.8 Input pads CIS., Cl ₈ and LSV 13 6.10 Output pads ICN. 14 6.11 Bidirectional pads CIO, CIO, 14 6.12 Bidirectional pads CIO, CIO, 14 6.13 Bidirectional pads CIO, CIO, 16 7 TMIMG SPECIFICATIONS. 16 7.1 Standard Operating Conditions 16 7.1 Standard Operating Cond		3.1	Key elen	ments	6
33 Interfaces 6 34 Development Tools 6 35 Touch modules based on EM6420 IC 6 4 BLOCK DIAGRAM 7 5 PAD DESCRIPTION 7 6 ELECTRICAL SPECIFICATIONS 9 6.1 Absolut Maximum Ratings 9 6.2 Handling Proceedures 9 6.3 Supply Voltage Configurations 9 6.4 Standard Operating Conditions 11 6.5 DC Characteristics – Power Supply 12 6.6 POR 12 6.7 Touch Screen Interface 13 6.9 Input pad En 13 6.1 Bidirectional pads CIO2, CIO7, 14 6.11 Bidirectional pads CIO2, CIO7, 14 6.12 Standard Operating Conditions 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.4 Silve SPI Interface 17 7.5 Silve VEC Interface 17 7.6 Silve VEC Interface <td></td> <td>3.2</td> <td>Power S</td> <td>մupply</td> <td>6</td>		3.2	Power S	մupply	6
3.4 Devicement Tools assed on EM6420 IC. 6 3.5 Touch modules based on EM6420 IC. 6 4. BLOCK DIAGRAM. 7 7 PAD DESCRIPTION 7 6. ELECTRICAL SPECIFICATIONS. 9 6.1 Absolute Maximum Ratings. 9 6.1 Absolute Maximum Ratings. 9 6.2 Handling Procedures. 9 6.3 Standard Operating Conditions. 11 6.6 POR 12 6.7 Touch Screen Interface. 13 6.8 Input pads CIS., Cls and LSV. 13 6.10 Output pad IRO. 14 6.11 Bidriectional pads CIO 100 7 TMIMING SPECIFICATIONS. 16 7.1 Standard Operating Conditions. 16 7.1 Standard Operating Conditions. 16 7.2 Communication Interface. 16 7.4 Standard Operating Conditions. 16 7.4 Standard Operating Conditions. 16		3.3	Interface	35 	
BLOCK DIAGRAM 7 SPAD DESCRIPTION 7 FAD DESCRIPTION 7 FELECTICAL SPECIFICATIONS 9 6.1 Absolute Maximum Ratings 9 6.2 Handling Proceedures 9 6.3 Supply Voltage Configurations 9 6.4 Standard Operating Conditions 11 6.5 DC Characteristics – Power Supply 12 6.6 POR 13 6.8 Input pad CLS, Cl ₂ and LSV 13 6.9 Input pad CL 13 6.1 Doubput apd CLO2, Clo2 14 6.11 Bidirectional pads CLO2, ClO2 14 6.12 Bidirectional pads CLO2, ClO2 14 6.13 Bidirectional pads CLO2, ClO2 14 6.14 Bidirectional pads CLO2 15 7 TMING SPECIFICATIONS. 16 7.1 Standard Operating Conditions 16 7.2 Communicatin Interface 17 7.4 Stave SPI Interface 17 7.5<		3.4	Develop	ment 1001s	b 6
4. EUCCK DIARKAM. // 7. PAD DESCRIPTION // 7. FAD DESCRIPTION // 7. RELECTRICAL SPECIFICATIONS 9 6.1 Absolute Maximum Ratings. 9 6.2 Handling Procedures 9 6.3 Standard Operating Conditions 9 6.4 Standard Operating Conditions 11 6.5 DC Characteristics - Power Supply 12 6.6 POR 13 6.1 Input pads CIS, Cl, and LSV 13 6.10 Output pad RQ. 14 6.11 Bidirectional pads CIO, CIC/ 14 6.12 Bidirectional pads CIO and CIO1 16 7.1 Standard Operating Conditions 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 Shib Direct Output Interface 16 7.4 Stave 4-Di Parallel Interface 16 7.5 Stave 4-Di Parallel Interface 17		3.5 DI O			
5. PAD DESCRIPTION	4.	BLU		JR AW	
6. ELECTRICAL SPECIFICATIONS 9 6.1 Absolute Maximum Ratings 9 6.2 Handling Procedures 9 6.3 Standard Operating Conditions 9 6.4 Standard Operating Conditions 9 6.4 Standard Operating Conditions 11 6.5 DC Characteristics – Power Supply 12 6.6 POR 12 6.7 Touch Screen Interface 13 6.8 Input pads CIS, Cl, and LSV 13 6.9 Input pads CIO, 14 6.11 Bidrectional pads CIO, 14 6.12 Bidrectional pads CIO, 14 6.12 Bidrectional pads CIO, 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 Stave SPI Interface 17 7.4 Stave SPI Interface 17 7.5 Stave 4-bit Parallel Interface 16 7.6 Stave 4-bit Parallel Interface 17 8.1 Introduction 10 8.2 Stav	5.	PAD	DESCRI		7
6.1 Absolute Maximum Ratings. 9 6.2 Handling Procedures. 9 6.3 Supply Voltage Configurations 9 6.4 Standard Operating Conditions 11 6.5 DC Characteristics – Power Supply 12 6.6 POR 12 6.7 Touch Screen Interface 13 6.8 Input pad CB, Cick, Cick and LSV 13 6.9 Input pad CB, Cick, Cick and LSV 13 6.10 Output pad Fn. 13 6.11 Bidrectional pads CIO2,CIO,	6.	ELE	CTRICAL	_ SPECIFICATIONS	9
6.2 Handling Procedures		6.1	Absolute	e Maximum Ratings	9
6.3 Supply Voitage Configurations 9 6.4 DC Characteristics - Power Supply 12 6.5 DC Characteristics - Power Supply 12 6.6 POR 12 6.7 Touch Screen Interface 13 6.8 Input pad En. 13 6.9 Input pad En. 13 6.10 Output pad IRQ 14 6.11 Bidirectional pads CIO2 CIO- 14 6.11 Bidirectional pads CIO2 CIO- 14 6.12 Communication Interface 16 15 7.1 Standard Operating Conditions 16 16 17 15 advard CiO1 and CiO1 15 7.1 Standard Operating Conditions 16 16 17 18 advard Cio Interface 16 7.1 Standard Operating Conditions 16 16 17 18 advard Cio Interface 17 7.5 Stave SPI Interface 17 16 18 advard Cio Interface 17 8.2 EM6420 Communication Interfaces 22 22 23 24 244 244 244		6.2	Handling	g Procedures	9
6.4 Standard Operating Conductors 12 6.6 POR 12 6.6 POR 12 6.7 Touch Screen Interface 13 6.8 Input pads CISx, CI ₈ and LSV 13 6.9 Input pads CIO2, CIO7 14 6.11 Bidirectional pads CIO2, CIO7 14 6.12 Bidirectional pads CIO2, CIO7 14 6.12 Bidirectional pads CIO2, CIO7 14 6.12 Bidirectional pads CIO2, CIO7 14 6.13 Standard Operating Conditions 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.4 Stave SPI Interface 17 7.6 Stave SPI Interface 17 7.6 Stave SPI Interface 20 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Stave SPI Interface 22 8.2.2 Stave SPI Interface 24 8.2.1 Stave SPI Interface 24 8.2.2 Communica		6.3	Supply V	Voltage Configurations	
6.5 DC Anadeletistics - Uver dupy 12 6.6 FOR 12 6.7 Touch Screen Interface 13 6.8 Input pad SC, Cla, and LSV 13 6.9 Input pad En 13 6.10 Output pad FR 14 6.11 Bidrectional pads CIO ₂ ClO, 14 6.12 Bidrectional pads CIO ₂ ClO, 14 6.13 Bidrectional pads CIO ₂ ClO, 14 6.14 Bidrectional pads CIO ₂ ClO, 14 6.15 Stadiated France 15 7.1 Standard Oparating Conditions 16 7.2 Communication Interface 16 7.4 Stave SPI Interface 17 7.5 Stave SPI Interface 19 8.1 Introduction 20 8.1 Introduction 20 8.2 Stave Izo Interface 12 8.2 Stave Izo Interface 12 8.2 Stave Izo Interface 21 8.2.1 Stave Izo Inte		6.4 6.5	Standard	a Operating Conditions	11 12
6.7 Touch Screen Interface 13 6.8 Input pads CIS, Cla, and LSV 13 6.9 Input pad Rn 13 6.10 Output pad RO 14 6.11 Bidirectional pads CIO ₂ CIO ₇ 14 6.12 Bidirectional pads CIO ₂ CIO ₇ 14 6.11 Bidirectional pads CIO ₂ CIO ₇ 14 6.12 Bidirectional pads CIO ₂ CIO ₇ 14 6.13 Bidirectional pads CIO ₂ CIO ₇ 14 6.14 Bidirectional pads CIO ₂ CIO ₇ 14 7.1 Standard Operating Conditions 16 7.2 Communication Interface		0.5 6.6	POR		۲۷ 12
6.8 Input pads CIS _x , Cl _y and LSV 13 6.9 Input pad En. 13 6.10 Output pad IRQ 14 6.11 Bidirectional pads CIO ₂ and CIO ₁ 14 6.12 Bidirectional pads CIO ₂ and CIO ₁ 15 7. TIMING SPECIFICATIONS 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 Shit Direct Output Interface 16 7.4 Stave 2D Therale Interface 16 7.5 Slave SPI Interface 17 8.6 EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 Communication Interface 21 8.2.1 Slave SPI Interface 22 8.2.2 Slave SPI Interface 22 8.2.1 Introduction 20 8.2 EM6420 Communication Interface 22 8.2.1 Slave SPI Interface 22 8.2.2 Slave SPI Interface 22 8.3.1 Commands starTS 29 <t< td=""><td></td><td>67</td><td>Touch S</td><td>Screen Interface</td><td></td></t<>		67	Touch S	Screen Interface	
6.9 Input pad En 13 6.10 Output pad IRQ 14 6.11 Bidirectional pads CIO2 CIO 7 TMIMICS SPECIFICATIONS 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 Standard Operating Conditions 16 7.4 Standard Operating Conditions 16 7.5 Stave IZC Interface 16 7.4 Stave IZC Interface 16 7.5 Slave SPI Interface 19 8. EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 Communication Interface 21 8.2.1 Slave SPI Interface 22 8.2.2 Stave SPI Interface 22 8.2.3 Slave SPI Interface 22 8.2.4 8-bit Direct Output Interface 24 8.3.1 Commands starTS 29 8.3.2 Commands starTS 29 8.3.3 Command starTS 29 8.3.4 Command starTS		6.8	Input pa	Ids CIS _X . Cl ₈ and LSV	
6.10 Output pad IRQ		6.9	Input pa	id En	
6.11 Bidirectional pads ClOg and ClO1 15 7. TIMING SPECIFICATIONS 16 7.1 Standard Operating Conditions 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 8-bit Direct Output Interface 16 7.4 Stave I2C Interface 16 7.5 Stave SPI Interface 17 7.6 Stave 42C Interface 20 8.1 Introduction 20 8.2 EM6420 Communication Interface 21 8.2.1 Stave SPI Interface 22 8.2.2 Stave SPI Interface 22 8.2.3 Stave 42bit Parallel Interface 22 8.2.4 8-bit Direct Output Interface 22 8.3.1 Command starTS 29 8.3.2 Command starTS 29 8.3.3 Command startTS 29 8.3.4 Command startTS 29 8.3.5 Command setBaseStarings 30 8.3.6 Command setBaseStarings 30 8.3.7 <td< td=""><td></td><td>6.10</td><td>Output p</td><td>bad IRQ</td><td>14</td></td<>		6.10	Output p	bad IRQ	14
6.12 Bidirectional pads CIO0 and CIO1 15 7. TIMING SPECIFICATIONS 16 7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 Stardard Operating Conditions 16 7.4 Stave I2C Interface 16 7.4 Stave I2C Interface 16 7.5 Stave 4-bit Parallel Interface 17 7.6 Stave 4-bit Parallel Interface 20 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Stave 12C Interface 21 8.2.2 Stave 4-bit Parallel Interface 22 8.2.3 Stave 4-bit Parallel Interface 22 8.2.4 8-bit Direct Output Interface 22 8.3.5 Commands startTS 29 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command startTS 29 8.3.4 Command startSNO 29 8.3.5 Command startBaseScanFreq 31 <t< td=""><td></td><td>6.11</td><td>Bidirectio</td><td>onal pads CIO₂ CIO₇</td><td>14</td></t<>		6.11	Bidirectio	onal pads CIO ₂ CIO ₇	14
7. TIMING SPECIFICATIONS. 16 7.1 Standard Operating Conditions. 16 7.2 Communication Interface 16 7.3 8-bit Direct Output Interface 16 7.3 8-bit Direct Output Interface 16 7.4 Slave SPI Interface. 16 7.5 Slave SPI Interface. 17 7.6 Slave 4-Dir Parallel Interface 19 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Slave 4-Dir Parallel Interface. 21 8.2.1 Slave 4-Dir Parallel Interface. 22 8.2.3 Slave 4-Dir Parallel Interface. 22 8.2.4 8-Dir Direct Output Interface. 22 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command startTS 29 8.3.4 Command stertTS 29 8.3.5 Command stertTS 29 8.3.6 Command stertTS 29 8.3.7 Command steletBaseSeConfreq 31		6.12	Bidirectio	onal pads CIO0 and CIO1	15
7.1 Standard Operating Conditions 16 7.2 Communication Interface 16 7.3 8-bit Direct Output Interface 16 7.4 Slave I2C Interface 16 7.5 Slave 4-bit Parallel Interface 17 7.6 Slave 4-bit Parallel Interface 19 8. EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Slave 42bit Parallel Interface 22 8.2.1 Slave 42bit Parallel Interface 22 8.2.1 Slave 42bit Parallel Interface 22 8.2.1 Slave 42bit Parallel Interface 24 8.2.1 Slave 42bit Parallel Interface 24 8.2.1 Slave 42bit Parallel Interface 25 8.2.2 Slave 42bit Parallel Interface 25 8.2.1 Slave 42bit Parallel Interface 26 8.2.1 Slave 42bit Parallel Interface 26 8.2.4 8-bit Direct Output Interface 27 8.2.5 Command startTS 28 <t< td=""><td>7.</td><td>ТІМІ</td><td>NG SPEC</td><td>CIFICATIONS</td><td>16</td></t<>	7.	ТІМІ	NG SPEC	CIFICATIONS	16
7.2 Communication Interface 16 7.4 Slave 12C Interface 16 7.4 Slave 12C Interface 17 7.6 Slave 4-bit Parallel Interface 19 8. EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Slave 4-bit Parallel Interface 22 8.2.2 Slave 4-bit Parallel Interface 22 8.2.1 Slave 4-bit Parallel Interface 22 8.2.2 Slave 5PI Interface 22 8.2.3 Slave 4-bit Parallel Interface 22 8.3 I Command startTS 29 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command startTS 29 8.3.4 Command startTS 29 8.3.5 Command startTS 29 8.3.6 Command startTS 29 8.3.7 Command startTS 29 8.3.8 Command startTS 29 8.3.9 Command		7.1	Standard	d Operating Conditions	
7.3 8-bit Diffect Output Interface 16 7.4 Slave SPI Interface 17 7.5 Slave SPI Interface 17 8. EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.2 EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.2 EM6420 To HOST CONTROLLER COMMUNICATION 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Slave 12C Interface 22 8.2.2 Slave 52F Interface 22 8.2.3 Slave 4.bit Parallel Interface 24 8.2.4 8-bit Direct Output Interface 25 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command startTS 29 8.3.4 Command startTS 29 8.3.5 Command startTs 29 8.3.6 Command startTs 29 8.3.7 Command startTs 30 8.3.8 Command startSetings 30		7.2	Commur	nication Interface	
7.4 Stave PC Interface		7.3	8-DIT DIFE		
7.5 Slave 4-bit Parallel Interface 19 8. EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Slave 4/2 Interface 21 8.2.2 Slave 4/2 Interface 22 8.2.3 Slave 4-bit Parallel Interface 22 8.2.4 8-bit Direct Output Interface 22 8.2.5 Commands 27 8.3 EM6420 Communication interface initialization. 27 8.3 EM6420 Commands. 28 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command selectBaseSettings 30 8.3.4 Command selectBaseSettings 30 8.3.5 Command setBaseSetTings 30 8.3.6 Command setBaseSetTings 32 8.3.7 Command setBaseSetTings 32 8.3.8 Command setBaseSetTings 32 8.3.9 Command setBaseSetTings 33 8.3.10 Command setBaseFlicensNb 32		7.4	Slave IZ	D Interface	10 17
8. EM6420 TO HOST CONTROLLER COMMUNICATION 20 8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2 EM6420 Communication Interface 21 8.2.1 Slave /EC Interface 21 8.2.2 Slave SPI Interface 22 8.2.3 Slave /EV Parallel Interface 22 8.2.4 8-bit Direct Output Interface 24 8.2.5 Communication interface initialization. 27 8.3 EM6420 Commands. 28 8.3.1 Command starTS 29 8.3.2 Command starTS 29 8.3.4 Command selfSMode. 29 8.3.5 Command selfSMode. 29 8.3.6 Command selfSMode. 29 8.3.7 Command selfSaseSettings 30 8.3.6 Command selfBaseScanFreq 31 8.3.7 Command selfBaseISenSNb 32 8.3.9 Command selfBaseISenSNb 32 8.3.10 Command selfBaseISenSNb 33		7.5	Slave 3-	-hit Parallel Interface	/۱ ۱۹
8.1 Introduction 20 8.2 EM6420 Communication Interfaces 21 8.2.1 Slave I/2 Interface 21 8.2.2 Slave SPI Interface 22 8.2.3 Slave 4-bit Parallel Interface 24 8.2.4 8-bit Direct Output Interface 25 8.2.5 Commands 25 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command self3seSettings 30 8.3.4 Command selectAlsesEntings 30 8.3.5 Command selectAlsettings 30 8.3.6 Command selfAlsCanFreq 31 8.3.7 Command selfAlsCanFreq 31 8.3.8 Command selfAlsCanFreq 31 8.3.9 Command selfAlsCanFreq 33 8.3.10 Command selfAlsCanFreq 33 8.3.11 Command selfAlsCanFreq 33 8.3.12 Command selfAlsCanFreq 33 8.3.13 Command selfAlsCanFreq 33 8.3.14 Command selfAlsCanFreq 33 8.3.13	8	FM6	420 TO H		20
8.2 EM6420 Communication Interfaces 21 8.2.1 Slave I2C Interface 21 8.2.3 Slave 4-bit Parallel Interface 22 8.2.3 Slave 4-bit Parallel Interface 22 8.2.3 Slave 4-bit Parallel Interface 24 8.2.4 8-bit Direct Output Interface initialization 27 8.3 EM6420 Commands 27 8.3 EM6420 Command starTS 29 8.3.1 Command starTS 29 8.3.2 Command starTS 29 8.3.3 Command starTS 29 8.3.4 Command selectAllSettings 30 8.3.5 Command selectAllSettings 30 8.3.6 Command selectAllSettings 30 8.3.7 Command selBaseSetFireq 31 8.3.8 Command selBaseRelQCond 33 8.3.9 Command selBaseRQCond 33 8.3.10 Command selAltEansNb 32 8.3.11 Command selAltEansNb 32 8.3.12 Command selBaseRQCond 33 8.3.13 Command selAltEansNb 32 <th>0.</th> <th>8 1</th> <th>Introduct</th> <th></th> <th>20 20</th>	0.	8 1	Introduct		20 20
8.2.1 Slave I2C Interface. 21 8.2.2 Slave SPI Interface. 22 8.2.3 Slave Abit Parallel Interface. 24 8.2.4 8-bit Direct Output Interface 25 8.2.5 Communication interface initialization. 27 8.3 EM6420 Commands. 28 8.3.1 Command startTS 29 8.3.2 Command startTS 29 8.3.3 Command setTSMode. 29 8.3.4 Command selectBaseSettings 30 8.3.5 Command setEaseScanFreq 31 8.3.6 Command setAllScanFreq 31 8.3.7 Command setAllScanFreq 31 8.3.8 Command setAllScanFreq 33 8.3.9 Command setAllScanFreq 33 8.3.9 Command setAllScanFreq 33 8.3.10 Command setAllScanFreq 33 8.3.11 Command setAllScanFreq 33 8.3.12 Command setAllIRQCond 33 8.3.13 Command setAllIRQCond 33 8.3.14 Command next (SPI protocol only) 34 <td></td> <td>8.2</td> <td>EM6420</td> <td>) Communication Interfaces</td> <td></td>		8.2	EM6420) Communication Interfaces	
82.2 Slave SPI Interface. 22 82.3 Slave 4-bit Parallel Interface. 24 82.4 8-bit Direct Output Interface 25 82.5 Communication interface initialization. 27 8.3 EM6420 Commands. 28 8.3.1 Command starTS. 29 8.3.2 Command starTS. 29 8.3.3 Command starTS. 29 8.3.4 Command startS. 29 8.3.5 Command selfSMode 29 8.3.4 Command seletTSMode 29 8.3.5 Command seletSesSeathings 30 8.3.6 Command seletAllSetings 30 8.3.7 Command setBaseScanFreq 31 8.3.8 Command setAltScanFreq 31 8.3.9 Command setAltRoCond 33 8.3.11 Command setAltRoCond 33 8.3.12 Command setAltRoCond 33 8.3.13 Command setAltRocond 33 8.3.14 Command setAltrego 36 8.3		0.2	8.2.1	Slave I2C Interface	21
82.3 Slave 4-bit Parallel Interface 24 82.4 8-bit Direct Output Interface 25 82.5 Communication interface initialization 27 8.3 EM6420 Commands 28 8.1 Command starTS 29 8.3.1 Command starTS 29 8.3.2 Command starTS 29 8.3.3 Command setTSMode 29 8.3.4 Command setTSMode 29 8.3.5 Command setTSMode 29 8.3.4 Command setTSMode 29 8.3.5 Command setCommand setSaseSettings 30 8.3.6 Command setAltSettings 30 8.3.7 Command setAltSetIngs 30 8.3.8 Command setAltRequest 31 8.3.8 Command setAltRequest 32 8.3.9 Command setAltRequest 32 8.3.10 Command setAltRequest 33 8.3.11 Command setAltRequest 33 8.3.12 Command setAltRequest 34 8.			8.2.2	Slave SPI Interface	22
8.2.4 8-bit Direct Output Interface 25 8.2.5 Communication interface initialization 27 8.3 EM6420 Commands 28 8.3.1 Command startTS 29 8.3.2 Command stopTS 29 8.3.3 Command stopTS 29 8.3.4 Command setFSMode 29 8.3.5 Command selectAllsesSettings 30 8.3.6 Command selectAllSettings 30 8.3.7 Command setBaseScanFreq 31 8.3.8 Command setBaseFilsensNb 32 8.3.9 Command setBaseRigeCond 33 8.3.10 Command setAlt/RQCond 33 8.3.11 Command setAlt/RQCond 33 8.3.12 Command setAlt/RQCond 33 8.3.13 Command setThreshold 36 8.3.14 Command getVpstings 36 8.3.15 Command getVpstings 36 8.3.16 Command getVpstings 36 8.3.17 Command getVpstings 36 8.3.16 Command getVpstings 37 9.1			8.2.3	Slave 4-bit Parallel Interface	24
8.2.5 Communication interface initialization. 27 8.3 EM6420 Commands. 28 8.3.1 Command startTS 29 8.3.2 Command stopTS 29 8.3.3 Command setTSMode. 29 8.3.4 Command setTasMode. 29 8.3.5 Command setTasseSettings 30 8.3.6 Command setEaseSettings 30 8.3.7 Command setBaseScanFreq 31 8.3.8 Command setBaseHiSensNb 32 8.3.9 Command setBaseHiSensNb 32 8.3.10 Command setBaseHiSensNb 32 8.3.11 Command setBaseHiSensNb 32 8.3.12 Command setBaseHiSensNb 32 8.3.10 Command setBaseHiSensNb 32 8.3.11 Command setBaseHiQCond 33 8.3.12 Command setAltIRQCond 33 8.3.13 Command setVipotcol only) 34 8.3.14 Command setVipotcol only) 34 8.3.15 Command getVersion 36 8.3.16 Command getVersion 36			8.2.4	8-bit Direct Output Interface	
8.3 EM0420 COMMands. 28 8.3.1 Command starTS 29 8.3.2 Command stopTS 29 8.3.3 Command setTSMode 29 8.3.4 Command setTSMode 29 8.3.5 Command selectBaseSettings 30 8.3.6 Command selectAltSettings 30 8.3.7 Command setAltFistings 30 8.3.8 Command setAltScanFreq 31 8.3.7 Command setAltFistings 32 8.3.9 Command setAltFistensNb 32 8.3.9 Command setAltFistensNb 32 8.3.10 Command setAltIRQCond 33 8.3.11 Command setAltIRQCond 33 8.3.12 Command setAltIRQCond 33 8.3.13 Command setAltIRQCond 34 8.3.14 Command setAltIRQCond 34 8.3.15 Command setAltIRQCond 36 8.3.16 Command setAltIRQCond 36 8.3.17 Command setAltIRQCond 36 8.3.18 Command setAltIRQCond 36 8.3.19 Co		0.0	8.2.5	Communication interface initialization.	
8.3.1 Command stopTS 29 8.3.3 Command setoTSMode		8.3	EIVI6420	Command startTS	
8.3.3 Command setTSMode 29 8.3.4 Command setTSMode 29 8.3.4 Command setTSMode 30 8.3.5 Command setEdBaseSettings 30 8.3.6 Command setEdBaseScanFreq 31 8.3.7 Command setAltScanFreq 31 8.3.8 Command setAltScanFreq 31 8.3.9 Command setAltFilsensNb 32 8.3.10 Command setAltIScanFreq 33 8.3.11 Command setAltIRQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command setAltIRQCond 33 8.3.14 Command setAltIrps 36 8.3.15 Command setAltIRQCond 33 8.3.16 Command setAltIrps 36 8.3.17 Command getAppSettings 36 8.3.16 Command getStatus 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave SPI communication frame 40 9.3 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 40			832	Command stonTS	29 20
8.3.4 Command selectBaseSettings 30 8.3.5 Command setEaseScanFreq 30 8.3.6 Command setBaseScanFreq 31 8.3.7 Command setBaseHiSensNb 32 8.3.8 Command setBaseHiSensNb 32 8.3.9 Command setBaseHiSensNb 32 8.3.10 Command setBaseHiSensNb 32 8.3.11 Command setBaseHiSensNb 33 8.3.12 Command setBaseHiSensNb 33 8.3.11 Command setAltPQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command getAppSettings 36 8.3.14 Command getAppSettings 36 8.3.15 Command getVersion 36 8.3.16 Command getVersion 36 8.3.17 Command getVersion 36 8.3.17 Command getVersion 36 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS <			8.3.3	Command setTSMode	
8.3.5 Command selectAltSettings 30 8.3.6 Command setBaseScanFreq 31 8.3.7 Command setAltScanFreq 31 8.3.8 Command setAltScanFreq 31 8.3.9 Command setAltBensNb 32 8.3.9 Command setAltHiSensNb 32 8.3.10 Command setBaseIRQCond 33 8.3.11 Command setAltIRQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command setThreshold 34 8.3.14 Command setThreshold 36 8.3.15 Command getAppSettings 36 8.3.16 Command getAppSettings 36 8.3.17 Command getStatus 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PACKAGE INFORMATION 48			8.3.4	Command selectBaseSettings	
8.3.6 Command setBaseScanFreq 31 8.3.7 Command setAltScanFreq 31 8.3.8 Command setBaseHiSensNb 32 8.3.9 Command setBaseHiSensNb 32 8.3.10 Command setBaseIRQCond 33 8.3.11 Command setBaseIRQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command end 34 8.3.14 Command setThreshold 36 8.3.15 Command getAppSettings 36 8.3.16 Command getVersion 36 8.3.17 Command getStatus 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PACKAGE INFORMATION 48			8.3.5	Command selectAltSettings	
8.3.7 Command setAltScanFreq 31 8.3.8 Command setBaseHiSensNb 32 8.3.9 Command setBaseHiSensNb 32 8.3.9 Command setAltHiSensNb 32 8.3.10 Command setAltIRegond 33 8.3.10 Command setAltIRQCond 33 8.3.11 Command setAltIRQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command ent 34 8.3.14 Command setThreshold 36 8.3.15 Command getAppSettings 36 8.3.16 Command getVersion 36 8.3.17 Command getStatus 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PACKAGE INFORMATION 48			8.3.6	Command setBaseScanFreq	
8.3.8 Command setBaseHiSensNb. 32 8.3.9 Command setAltHiSensNb. 32 8.3.10 Command setBaseIRQCond. 33 8.3.11 Command setAltIRQCond. 33 8.3.12 Command next (SPI protocol only). 34 8.3.13 Command end. 34 8.3.14 Command setThreshold. 36 8.3.15 Command getAppSettings. 36 8.3.16 Command getVersion. 36 8.3.17 Command getStatus. 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PACKAGE INFORMATION 48			8.3.7	Command setAltScanFreq	31
8.3.9 Command setAltHiSensivity 32 8.3.10 Command setBaselRQCond 33 8.3.11 Command setAltIRQCond 33 8.3.11 Command setAltIRQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command end. 34 8.3.14 Command setThreshold 36 8.3.15 Command getAppSettings. 36 8.3.16 Command getVersion. 36 8.3.17 Command getStatus. 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame. 41 10. TYPICAL APPLICATIONS 43 11. PAD LOCATION DIAGRAM 46 12. PACKAGE INFORMATION 48			8.3.8	Command setBaseHiSensNb	
0.3.10 Command setBaserrectorid 33 8.3.11 Command setAlt/RQCond 33 8.3.12 Command next (SPI protocol only) 34 8.3.13 Command end 34 8.3.14 Command setThreshold 36 8.3.15 Command getAppSettings 36 8.3.16 Command getVersion 36 8.3.17 Command getVersion 36 8.3.17 Command getStatus 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PAD LOCATION DIAGRAM 46 12. PACKAGE INFORMATION 48			0.3.9 0 2 10	Command setPasoIPOCond	
8.3.12 Command next (SPI protocol only)			0.3.10 8 3 11	Command setAltIROCond	
8.3.12 Command end			8.3 12	Command next (SPI protocol only)	
8.3.14 Command setThreshold 36 8.3.15 Command getAppSettings 36 8.3.16 Command getVersion 36 8.3.17 Command getStatus 37 9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PAD LOCATION DIAGRAM 46 12. PACKAGE INFORMATION 48			8.3.13	Command end	
8.3.15 Command getAppSettings			8.3.14	Command setThreshold	
8.3.16 Command getVersion			8.3.15	Command getAppSettings	
8.3.17 Command getStatus			8.3.16	Command getVersion	
9. EM6420 COMMUNICATION FRAMES 39 9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PAD LOCATION DIAGRAM 46 12. PACKAGE INFORMATION 48			8.3.17	Command getStatus	
9.1 Slave I ² C communication frame 40 9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PAD LOCATION DIAGRAM 46 12. PACKAGE INFORMATION 48	9.	EM6	420 COM	MUNICATION FRAMES	39
9.2 Slave SPI communication frame 40 9.3 Slave 4-bit parallel communication frame 41 10. TYPICAL APPLICATIONS 43 11. PAD LOCATION DIAGRAM 46 12. PACKAGE INFORMATION 48		9.1	Slave I ²	C communication frame	40
9.3 Slave 4-bit parallel communication trame		9.2		PI communication frame	40
10. TYPICAL APPLICATIONS		0.0	Slave Sr	hit nevellel communication from c	
11. PAD LOCATION DIAGRAM		9.3	Slave Slave 4-	-bit parallel communication frame	41
12. PACKAGE INFORMATION	10.	9.3 TYP I	Slave 3- Slave 4-	-bit parallel communication frame PLICATIONS	41 43
	10. 11.	9.3 TYPI PAD	Slave SH Slave 4-I ICAL APH LOCATIO	-bit parallel communication frame PLICATIONS ON DIAGRAM	41 43 46

EM6420

	•		
13.	ORD	ERING INFORMATION	.54
	12.3	Sawn 32-pin Micro Lead Frame 2 – 5 x 5 mm body	.52
	12.2		.00
	12.2	Sawn 36-pin Micro Lead Frame 2 – 5 x 5 mm body	50
	12.1	Sawn 40-pin Micro Lead Frame 2 – 6 x 6 mm body	.48

1. PRELIMINARIES

1.1 REFERENCE

[1] "The I2C-Bus Specification – Version 2.1", Philips Semiconductors, January 2000

1.2 CONVENTIONS

The following conventions will be used in this document:

- Signals which are active low have names which start with the prefix "n_". Example: n_rst. Signal names without this prefix are active high.
- When qualifying a signal, the term "asserted" means that the signal is active, while the term "deasserted" or "negated" means that the signal is inactive regardless of whether the active state is represented by a high or low voltage.
- When qualifying a bit within a register, the term "set" or "activated" means that the bit value is a high logic level, while the term "cleared" means that the bit value is a low logic level.
- Signal busses are denoted with the range "[MSB:LSB]" where the index of the Most Significant Bit (MSB) is given first and the index of the Least Significant Bit (LSB) is given last.
- Bit group within a register are denoted B_{MSB} ... B_{LSB} where the index of the Most Significant
 Bit (MSB) is given first and the index of the Least Significant Bit (LSB) is given last.
- Hexadecimal numbers are followed by the index "_H". Example: **1F5A**_H.
- Binary numbers are followed by the index "_B". Example: **1011**_B.
- Register names followed by the index "_H" refers to the high byte of a 16-bit register.
- Register names followed by the index "L" refers to the low byte of a 16-bit register.

2. GENERAL DESCRIPTION

The **EM6420** is a very low power ASIC that includes a Touch Screen interface able to handle up to 16 capacitive sensors. Several devices can be used in parallel to manage more than 16 sensors. The application parameters (number of used sensors, sensors scan frequency, sensors sensitivity level, IRQ condition ...) are fully configurable either from a host microcontroller through a communication port or from several configuration inputs.

Figure 2-1: Typical Operating Configuration

Depending on the IRQ condition parameter, a user-selectable IRQ active edge can be generated:

- At the end of every scan.
- At the end of a scan if the sensors state has changed.
- At the end of a scan if either the sensors state has changed or at least one sensor is active.

The sensors state can then be read by the host microcontroller through the communication port.

The **EM6420** can also detect the most activated sensor in applications where sensors are tightly spaced by comparing relative levels among sensors and by selecting the one with the largest signal strength.

Supply voltage range can be selected either from 1.2 V to 2.0 V or from 2.2 V to 3.6 V. Depending on selected supply voltage range, 3 or 4 decoupling capacitors are required for overall functionality. No other external component is needed.

The **EM6420** can operate over a wide temperature range, from -40°C to +85°C. It is available in die form or in different SMT packages.

Ultra low current consumptions have been achieved with the EM6420 starter kit¹, typically² :

- 8.0 μ A @ 3.0 V (14.5 μ A @ 1.5 V) for 16 sensors scanned at 8 Hz in Low Power Mode
- 2.0 μA @ 3.0 V (5.0 μA @1.5 V) for 16 sensors scanned at 8 Hz in Ultra Low Power Mode
- 5.0 μ A @ 3.0 V (9.0 μ A @ 1.5 V) for 8 sensors scanned at 2 Hz in Low Power Mode
- 0.7 μA @ 3.0 V (1.2 μA @1.5 V) for 8 sensors scanned at 2 Hz in Ultra Low Power Mode

¹ Please ask EM Microelectronic-Marin SA for EM6420 starter kit availability

² Other values may be obtained depending on electrode design and selected parameters

3. FEATURES

3.1 KEY ELEMENTS

- Ultra low power and ultra low voltage Touch Screen interface
- Up to 16 sensor inputs per device
- Increased number of sensors can be addressed with more devices in parallel
- User selectable power supply range (see below)
- User-selectable active edge IRQ output signal
- User-selectable communication interface (see below)
- Active high enable input
- Maximum 4 external components needed (decoupling capacitors only)
- No software development or tuning required

3.2 POWER SUPPLY

- Low supply voltage range : 1.2 V to 2.0 V
- High supply voltage range : 2.2 V to 3.6 V
- Disabled Mode consumption : I_{DD Disabled} < 50 nA
- $I_{DD} = 8.0 \ \mu A @ 3.0 \ V (14.5 \ \mu A @ 1.5 \ V)$ for 16 sensors scanned at 8 Hz in Low Power Mode
- $I_{DD} = 2.0 \ \mu A \ @ 3.0 \ V (5.0 \ \mu A \ @ 1.5 \ V)$ for 16 sensors scanned at 8 Hz in Ultra Low Power Mode
- $I_{DD} = 5.0 \ \mu A \ @ 3.0 \ V (9.0 \ \mu A \ @ 1.5 \ V)$ for 8 sensors scanned at 2 Hz in Low Power Mode
- I_{DD} = 0.7 μA @ 3.0 V (1.2 μA @ 1.5 V) for 8 sensors scanned at 2 Hz in Ultra Low Power Mode
- Internal voltage regulator for logic supply when used in high supply voltage range
- Internal voltage multiplier for analog supply when used in low supply voltage range
- Internal voltage regulator for analog supply

3.3 INTERFACES

- 4-wire SPI
- I²C (Standard-Mode or Fast-Mode compatible)
- 4-bit parallel interface
- 8-bit direct output (Standalone Mode)

3.4 DEVELOPMENT TOOLS

- EM6420 starter kit with its related documentation
- Ultra low power User Interface reference design with EM6420-based Touch solution, EM6110 LCD driver and EM6819 host MCU

3.5 TOUCH MODULES BASED ON EM6420 IC

- Capacitive electrodes design capability on various non-conductive substrates (according customer's requirements)"
- Transparent / Invisible electrodes possible
- Application-specific touch modules development: contact EM-Microelectronic HQ

Figure 4-1 : EM6420 Block Diagram

5. PAD DESCRIPTION

PAD				
Number	Name	Туре	Description	Note
1	V _{ss}	Supply	Negative power supply, bulk	Internal reference potential (ground)
2	C _{BL}	Analog	Charge pump Booster Capacitor connection	Low voltage side
3	Свн	Analog	Charge pump Booster Capacitor connection	High voltage side
4	V _{CP}	Supply	Unregulated C harge P ump output voltage, capacitor connection	
5	V _{DDA}	Supply	Regulated Analog supply voltage, capacitor connection	
6	S 15	Analog	Touch Screen Sensor 15 connection	Pull-down when not selected – See Note 3
7	S ₁₁	Analog	Touch Screen Sensor 11 connection	Pull-down when not selected - See Note 3
8	S ₁₄	Analog	Touch Screen Sensor 14 connection	Pull-down when not selected – See Note 3
9	S ₁₀	Analog	Touch Screen Sensor 10 connection	Pull-down when not selected – See Note 3
10	S ₇	Analog	Touch Screen Sensor 7 connection	Pull-down when not selected – See Note 3

Table 5-1 : EM6420 pad description

7

PAD				
Number	Name	Туре	Description	Note
11	S ₆	Analog	Touch Screen Sensor 6 connection	Pull-down when not selected – See Note 3
12	S₅	Analog	Touch Screen Sensor 5 connection	Pull-down when not selected – See Note 3
13	S4	Analog	Touch Screen Sensor 4 connection	Pull-down when not selected – See Note 3
14	S₅	Analog	Touch Screen Sensor 9 connection	Pull-down when not selected – See Note 3
15	S ₁₃	Analog	Touch Screen Sensor 13 connection	Pull-down when not selected – See Note 3
16	S₃	Analog	Touch Screen Sensor 3 connection	Pull-down when not selected – See Note 3
17	S ₁₂	Analog	Touch Screen Sensor 12 connection	Pull-down when not selected – See Note 3
18	S ₂	Analog	Touch Screen Sensor 2 connection	Pull-down when not selected – See Note 3
19	S ₈	Analog	Touch Screen Sensor 8 connection	Pull-down when not selected – See Note 3
20	S ₁	Analog	Touch Screen Sensor 1 connection	Pull-down when not selected – See Note 3
21	S ₀	Analog	Touch Screen Sensor 0 connection	Pull-down when not selected
22	TIC	Input	Factory – Reserved IC Test input	Pull-down – See Note 1
23	тск	Input	Factory – Reserved IC Test ClocK input	Pull-down – See Note 1
24	LSV	Input	Low Supply Voltage selection input	
25	IRQ	Output	Interrupt Request Output	Push-pull or open-drain with internal pull-up resistor
26	Cl ₈	Input	Communication Controller Input 8	
27	CIO ₇	Bidir	Communication Controller IO 7	See Note 2
28	CIO ₆	Bidir	Communication Controller IO 6	See Note 2
29	CIO₅	Bidir	Communication Controller IO 5	See Note 2
30	CIO ₄	Bidir	Communication Controller IO 4	See Note 2
31	En	Input	IC En able input	
32	V _{DD}	Supply	Positive power supply	
33	CIO ₃	Bidir	Communication Controller IO 3	See Note 2
34	CIO ₂	Bidir	Communication Controller IO 2	See Note 2
35	CIO ₁	Bidir	Communication Controller IO 1	See Note 2
36	CIO	Bidir	Communication Controller IO 0	See Note 2
37	CIS ₂	Input	Communication Interface Selector input 2	
38	CIS₁	Input	Communication Interface Selector input 1	
39	CIS₀	Input	Communication Interface Selector input 0	
40	V _{DDD}	Supply	Regulated D igital supply voltage, capacitor connection	
41	V _{DD}	Supply	Positive power supply	

<u>Note 1</u> : Connect this pad to V_{ss} for better ESD protection in customer application

Note 2 : Depending on selected communication interface, pad type may be either Input, Output or Bidirectional

Note 3 : This pin must be left unconnected when not used

Table 5-2 : EM6420 pad description (cont'd)

6. ELECTRICAL SPECIFICATIONS

6.1 ABSOLUTE MAXIMUM RATINGS

Parameter	Conditions	Symbol	Min	Max	Units
Storage Temperature		T _{Store}	-40	125	°C
Supply Voltage	$V_{SS} = 0 V$	V _{DD}	-0.2	4.6	V
Voltage on any pin		V _{MAX}	$V_{\text{SS}}-0.2$	V _{DD} + 0.2	V

Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified electrical characteristics may affect device reliability or cause malfunction.

6.2 HANDLING PROCEDURES

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions should be taken as for any other CMOS integrated circuit. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range.

6.3 SUPPLY VOLTAGE CONFIGURATIONS

The **EM6420** is supplied by a single external power supply between V_{DD} and V_{SS} (Ground). A voltage multiplier and two built-in voltage regulators provide supply voltages V_{DDD} for the internal logic and V_{DDA} for the analog Touch Screen blocks as well as for the system clock RC oscillator. These two regulator outputs are connected to the V_{DDD} and V_{DDA} pads respectively, through internal resistors R_{VDDD} and R_{VDDA} . Together with external capacitors C_{VDDD} and C_{VDDA} , these internal resistors implement a low pass filter function to protect the internal circuit against parasitic over and under voltages. When used, the voltage multiplier, clocked by the wake-up RC oscillator, needs an external booster capacitor C_B (typ. 47 nF) to double the input voltage and an external buffer capacitors C_{VDDD} , C_{VDDA} and C_{VCP} are 100 nF, 22 nF and 100 nF.

The power supply configuration depends on the selected supply voltage range (**LSV** input state). When the **LSV** input is connected to V_{DD} , the low supply voltage range is selected. The voltage regulator V_{DDD} is disabled (output tri-stated) to avoid an additional dropout voltage between V_{DD} and V_{DDD} supply voltages. In that case, the internal logic is supplied directly by V_{DD} . The voltage multiplier is enabled and the generated voltage V_{CP} supplies the voltage regulator V_{DDA} , the Touch Screen sensor pads as well as several power pads. When the **LSV** input is connected to V_{SS} , the high supply voltage range is selected. The internal logic is supplied by the voltage regulator V_{DDD} to reduce overall power consumption. The voltage multiplier is disabled (output tri-stated) and the voltage regulator V_{DDA} is supplied directly by V_{DD} .

Depending on the selected supply voltage range, 3 or 4 decoupling capacitors are required for the entire functionality of the EM6420 from -40 to + 85°C. Refer to the schematics below for proper mode of operation.

In high supply voltage range (LSV is deasserted), connect:

- a 100nF decoupling capacitor to V_{DDD}
- a 100nF decoupling capacitor to V_{DD}
- a 22nF decoupling capacitor to V_{DDA}

Figure 6-1: EM6420 power supply configuration when the high voltage supply range is selected

In low supply voltage range (LSV is asserted), connect:

- a 47nF capacitor to pins C_{BH} and C_{BL}
- a 100nF decoupling capacitor to V_{CP}
- a 100nF decoupling capacitor to V_{DD}
- a 22nF decoupling capacitor to V_{DDA}

Figure 6-2: EM6420 power supply configuration when the low voltage supply range is selected

Figure 6-3 : EM6420 simplified schematic of both supply voltage configurations

6.4 STANDARD OPERATING CONDITIONS

The **EM6420** can be used in two different modes according to customer application requirements: Low Power Mode or Ultra Low Power Mode (see § 8.3.3).

In Low Power Mode, the **EM6420** device remains always in Active Mode, i.e. during the scans of the sensors and also between them. The Touch Screen interface settings are internally chosen in order to minimize the current consumption. Furthermore, the communication between the host microcontroller and the **EM6420** is more efficient than in Ultra low Power Mode. The **EM6420** is indeed always active and so it takes less time to reply to a received command.

In Ultra Low Power Mode, the **EM6420** device remains in Active Mode only during the scans of the sensors and goes in Sleep Mode between them. The Touch Screen interface settings are internally chosen in order to scan as fast as possible the sensors, thus shortening as much as possible the time the **EM6420** device remains in Active Mode. Furthermore, receiving a command while in Sleep Mode may slow down the communication between the host microcontroller and the **EM6420**, as it has first to return in Active Mode before preparing and sending the reply. But when this mode is selected, it reduces the **EM6420** power consumption with full functionality to the minimum (see typical values above).

If the Touch Screen interface has to be switched off for a long time, it is strongly recommended to put the **EM6420** in Disable Mode by putting the **En** input to V_{SS} instead of simply sending a *stopTS* command (see § 8.3.2). In this case, the current consumption is reduced to a few nA, but the **EM6420** loses the application parameters and the host microcontroller must send them again next time the **En** input is set to V_{DD} .

Units

°C

V

V

V

nF

nF

nF nF

6.5 DC CHARACTERISTICS - POWER SUPPLY

Conditions unless otherwise specified : V_{DD} = 3.0 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Мах	Units
Supply voltage	T = -40 to +85°C	V_{DD}	2.2	3.0	3.6	V
Disable mode current consumption ³	\textbf{En} input connected to V_{SS}	I_{DD_Dis}		2	10	nA
Sleep mode current consumption		I _{DD_SIP}		470	580	nA
Active mode current consumption	Touch Screen OFF	I _{DD_RUN}		7.5	9.5	μA

Conditions unless otherwise specified : V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Мах	Units
Supply voltage	T = -40 to +85°C	V_{DD}	1.2	1.5	2.0	V
Disable mode current consumption ⁴	\textbf{En} input connected to V_{SS}	$I_{\text{DD}_{\text{Dis}}}$		2	10	nA
Sleep mode current consumption		I_{DD_Slp}		380	530	nA
Active mode current consumption	Touch Screen OFF	I _{DD_RUN}		12.0	16.5	μA

6.6 POR

Conditions unless otherwise specified : V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Мах	Units
High threshold voltage		V_{IH_POR}	0.75	0.90	1.10	V
Threshold voltage hysteresis		$V_{\text{Hys}_\text{POR}}$	50		110	mV

³ This value is guaranteed by design

⁴ This value is guaranteed by design

6.7 TOUCH SCREEN INTERFACE

Parameter	Conditions	Symbol	Min	Тур.	Мах	Units
Poforonco conocitor	$TS_RCap = 00_H$	C		0.5		pF
	$TS_RCap = 3F_H$	0 _R		31.5		pF
Reference capacitor increment	∆ TS_RCap = 1	ΔC_{R}		0.5		pF
Pad $\mathbf{S}_{\mathbf{x}}$ input current	Pull-down activated, analog switch turned OFF $V_{IN} = 0.3 V$	I _{IN_SPdON}	100	180	260	μA

Conditions unless otherwise specified : V_{DD} = 3.0 V or V_{DD} = 1.5 V, T = 25°C

6.8 INPUT PADS CIS_X , CI_8 AND LSV

Conditions unless otherwise specified : V_{DD} = 3.0 V or V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level input voltage		V_{IL_CIS}	V _{SS}		0.3 • V _{DD}	V
High level input voltage		V _{IH_CIS}	0.7 • V _{DD}		V _{DD}	V
Static input current	$V_{IN} = V_{SS} \dots V_{DD}$	$I_{\text{In_CIS}}$	-100		100	nA

6.9 INPUT PAD EN

Conditions unless otherwise specified : V_{DD} = 3.0 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level input voltage		V_{IL_En}	V _{SS}		0.7	V
High level input voltage		V_{IH_En}	2.2		V_{DD}	V
Schmitt trigger hysteresis		V_{Hys_En}		0.8		V
Static input current	$V_{IN} = V_{SS} \dots V_{DD}$	I _{In_En}	-100		100	nA
Min filtered glitches width		$t_{\text{FGl}_{\text{En}}}$			10	μs
Valid reset pulse width ($\mathbf{En} = V_{SS}$)		t _{En}	50			μs

Conditions unless otherwise specified : V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Мах	Units
Low level input voltage		V_{IL_En}	V _{SS}		0.4	V
High level input voltage		V_{IH_En}	1.1		V _{DD}	V
Schmitt trigger hysteresis		V_{Hys_En}		0.2		V
Static input current	$V_{\text{IN}} = V_{\text{SS}} \ \dots \ V_{\text{DD}}$	I _{In_En}	-100		100	nA
Min filtered glitches width		t _{FGI_En}			10	μs
Valid reset pulse width ($\mathbf{En} = V_{SS}$)		t _{En}	50			μs

6.10 OUTPUT PAD IRQ

Conditions unless otherwise	e specified : $V_{DD} = 3.0 \text{ V}, \text{ T} = 25^{\circ}\text{C}$
-----------------------------	--

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level output current	$V_{OUT} = 0.3 V$	I _{OL_IRQ}	3.0			mA
	Push-pull configuration $V_{OUT} = V_{DD} - 0.3 V$	I _{OH_IRQP}			-3.0	mA
High level output current	Open drain with internal pull- up configuration $V_{OUT} = V_{SS}$	I _{OH_IRQQ}	-140		-75	μA
Internal pull-up resistance		R _{PU_IRQ}		30		kΩ

Conditions unless otherwise specified : V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level output current	$V_{OUT} = 0.3 V$	I _{OL_IRQ}	1.6			mA
	Push-pull configuration $V_{OUT} = V_{DD} - 0.3 V$	I _{OH_IRQP}			-1.6	mA
High level output current	Open drain with internal pull- up configuration $V_{OUT} = V_{SS}$	I _{OH_IRQQ}	-75		-35	μA
Internal pull-up resistance		R _{PU_IRQ}		30		kΩ

6.11 BIDIRECTIONAL PADS CIO₂ ... CIO₇

Conditions unless otherwise specified : V_{DD} = 3.0 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level output current	$V_{OUT} = 0.3 V$	I _{OL_CIO}	3.0			mA
High level output current	$V_{\text{OUT}} = V_{\text{DD}} - 0.3 \text{ V}$	I _{он_сю}			-3	mA
Low level input voltage		V_{IL_CIO}	V _{SS}		0.3 • V _{DD}	V
High level input voltage		V _{IH_CIO}	0.7 • V _{DD}		V _{DD}	V
Static input current	$V_{IN} = V_{SS} \dots V_{DD}$	I _{IN_CIO}	-100		100	nA

Conditions unless otherwise specified : V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level output current	$V_{OUT} = 0.3 V$	I _{OL_CIO}	1.6			mA
High level output current	$V_{\text{OUT}} = V_{\text{DD}} - 0.3 \text{ V}$	I _{OH_CIO}			-1.6	mA
Low level input voltage		V _{IL_CIO}	V _{ss}		0.3 • V _{DD}	V
High level input voltage		V _{IH_CIO}	0.7 • V _{DD}		V _{DD}	V
Static input current	$V_{\text{IN}} = V_{\text{SS}} \ \ V_{\text{DD}}$	I _{IN_CIO}	-100		100	nA

6.12 BIDIRECTIONAL PADS CIO0 AND CIO1

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level output current	$V_{OUT} = 0.3 V$	I _{OL_I2C}	3.0			mA
	Push-pull configuration $V_{OUT} = V_{DD} - 0.3 V$	I _{OH_I2CP}			-3.0	mA
High level output current	Open drain with internal weak pull-up configuration $V_{OUT} = V_{SS}$	I _{OH_I2CWR}	-120		-50	μA
	Open drain with internal strong pull-up configuration $V_{OUT} = V_{SS}$	I _{OH_I2CSR}	-200		-110	μA
Internal weak pull-up resistance		R_{I2C_W}		40		kΩ
Internal strong pull-up resistance		R _{I2C_S}		20		kΩ
Low level input voltage		V _{IL_I2C}	Vss		0.3 • V _{DD}	V
High level input voltage		V _{IH_I2C}	0.7 • V _{DD}		V _{DD}	V
Static input current	Open drain with no internal pull-up configuration $V_{IN} = V_{SS} \dots V_{DD}$	I _{IN_I2C}	-100		100	nA
Schmitt trigger hysteresis		V _{Hys_l2C}	0.05 • V _{DD}			V

Conditions unless otherwise specified : V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Low level output current	$V_{OUT} = 0.3 V$	I _{OL_I2C}	1.6			mA
	Push-pull configuration $V_{OUT} = V_{DD} - 0.3 V$	I _{OH_I2CP}			-1.6	mA
High level output current	Open drain with internal weak pull-up configuration $V_{OUT} = V_{SS}$	I _{OH_I2CWR}	-60		-25	μA
	Open drain with internal strong pull-up configuration $V_{OUT} = V_{SS}$	I _{OH_I2CSR}	-100		-55	μA
Internal weak pull-up resistance		R _{I2C_W}		40		kΩ
Internal strong pull-up resistance		R _{I2C_S}		20		kΩ
Low level input voltage		V _{IL_I2C}	V _{SS}		0.3 • V _{DD}	V
High level input voltage		V _{IH_I2C}	0.7 • V _{DD}		V _{DD}	V
Static input current	Open drain with no internal pull-up configuration $V_{IN} = V_{SS} \dots V_{DD}$	I _{IN_I2C}	-100		100	nA
Schmitt trigger hysteresis		V _{Hys_I2C}	0.1 • V _{DD}			V

7. TIMING SPECIFICATIONS

7.1 STANDARD OPERATING CONDITIONS

Parameter	Symbol	Min	Тур.	Max	Units
Operating Temperature	T _{Op}	-40		85	°C
Low Supply Voltage Range	V _{DDL}	1.2	1.5	2.0	V
High Supply Voltage Range	V _{DDH}	2.2	3.0	3.6	V
Reference terminal	V _{SS}		0		V

7.2 COMMUNICATION INTERFACE

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
	8-bit Direct Output Interface selected				70	ms
Communication intenace start-up time	SPI, I2C or Parallel Interface selected	^L CI_St			10	ms
IRQ start-up pulse width		$t_{\text{IRQ}_{\text{StPW}}}$	100		150	μs

7.3 8-BIT DIRECT OUTPUT INTERFACE

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
IRQ pulse width		t _{IRQ_PW}	100		150	μs

7.4 SLAVE I2C INTERFACE

Figure 7-1: I2C interface timings

Conditions unless otherwise specified : V_{DD} = 3.0 V or V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
SCL clock frequency		f _{SCL}	0		400	kHz
Hold time (repeated) START condition.		t _{STAH}	0.6			μs
Low period of the SCL clock		t _{SCLL}	1.3			μs
High period of the SCL clock		t _{SCLH}	0.6			μs

Conditions unless otherwise specified : V_{DD} = 3.0 V or V_{DD} = 1.5 V, T = 25°C

Parameter	Conditions	Symbol	Min	Тур.	Мах	Units
Setup time for a repeated START condition		t _{STASU}	0.6			μs
Data hold time		t _{I2C_DH}	0		0.9	μs
Data setup time		t _{I2C_DSU}	100			ns
Rise time of both SDA and SCL signals		t _{I2C_R}	20 + 0.1·C _b		300	ns
Fall time of both SDA and SCL signals		t _{I2C_F}	20 + 0.1·C _b		300	ns
Setup time for a STOP condition		t _{stosu}	0.6			μs
Bus free time between a STOP and a START condition		t _{BF}	1.3			μs
	With internal pull-up resistors	Cb			200	pF
Capacitive load for each bus line	With external pull-up resistors	C _b			400	pF

7.5 SLAVE SPI INTERFACE

Figure 7-2 : SPI Interface timings when CK_Pha input is set to V_{SS}.

Figure 7-3 : SPI Interface timings when CK_Pha input is set to V_{DD}.

Parameter	Conditions	Symbol	Min	Tun	Max	Unite
Falameter	Conditions	Symbol	IVIIII	тур.	IVIAX	Units
Operating frequency		f _{SPI_Op}			400	kHz
Cycle time		t _{SPI_Cyc}	2.5			μs
Rise time of inputs SCK, SDI and nSS		t _{SPI_R}			250	ns
Fall time of inputs SCK, SDI and nSS		t _{SPI_F}			250	ns
Delay from nSS low to SRDY high		t _{nSS2SRDY}			200	ns
Low period of the SCK clock		t _{SCKL}	1			μs
High period of the SCK clock		t _{scкн}	1			μs
Data setup time		t _{SPI_DSU}	200			ns
Data hold time		t _{SPI_DH}	200			ns
Delay from valid data to SRDY high		t _{SDO2SRDY}			200	ns
Delay from SRDY high to first SCK edge		t _{SRDY2SCK}	200			ns
Delay from last SCK edge to SRDY low		t _{SCK2SRDY}			200	ns
Delay from last SCK edge to nSS high		t _{SCK2nSS}			200	ns
nSS high time (Bus free time between communication frames)		t _{nSSH}	2			μs

Conditions unless otherwise specified : V_{DD} = 3.0 V or V_{DD} = 1.5 V, T = 25 $^{\circ}\text{C}$

7.6 SLAVE 4-BIT PARALLEL INTERFACE

Figure 7-4 : Parallel Interface timings

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Operating frequency		f _{Par_Op}			400	kHz
Cycle time		t _{Par_Cyc}	2.5			μs
Rise time of inputs CE, CS, RD / nWR and D_x		t _{Par_R}			250	ns
Fall time of inputs CE, CS, RD / nWR and $D_{\rm X}$		t _{Par_F}			250	ns
Delay from CE high to SRDY high		t _{CE2SRDY}			200	ns
Time interval between CS strobes		t _{CSL}	1			μs
CS strobe width		t _{CSH}	1			μs
Data setup time		t _{Par_DSU}	200			ns
Data hold time		t _{Par_DH}	200			ns
Delay from valid data to SRDY high		t _{D2SRDY}			200	ns
Delay from SRDY high to CS strobe		t _{SRDY2CS}	200			ns
Delay from CS strobe to SRDY low		t _{CS2SRDY}			200	ns
Delay from RD / nWR low to valid data		t _{RW2D}			200	ns
Delay from RD / nWR high to CS strobe		t _{RW2CS}	200			ns
Delay from CS strobe to RD / nWR low		t _{CS2RW}	200			ns
Delay from CS strobe to CE low		t _{CS2CE}	200			ns
CE low time (Bus free time between communication frames)		t _{CEL}	2			μs

Conditions unless otherwise specified : V_{DD} = 3.0 V or V_{DD} = 1.5 V, T = 25°C

8. EM6420 TO HOST CONTROLLER COMMUNICATION

8.1 INTRODUCTION

The **EM6420** can communicate with a host processor through several communication interfaces, mainly to receive application parameters, to signal sensors activity or to send **EM6420** status / error flags. Only one communication interface can be active at a time, as they share the same **EM6420** IO pads $CIO_7 \dots CIO_0$ and input pad CI_8 . During a communication, the host processor is always considered as the master device and the **EM6420** as the slave one. Thus, the **EM6420** may never initiate a communication. However, by asserting its output pad **IRQ**, the **EM6420** can signal to the host processor that a predefined condition or an error occurred and that a communication may be initiated, normally by a **getStatus** command.

Host Microcontroller

Figure 8-1 : Multi EM6420 configuration

In applications where several **EM6420** are used, the open-drain with internal pull-up resistor configuration must be selected for **IRQ** output pads, to allow connecting all these output pads to a unique host IRQ input (see *Figure 8-1*).

Figure 8-2 : Configuration of EM6420 IRQ output pad

In this case, all **IRQ** output pads should be asserted by default (wired-OR), and each **EM6420** can signal to the host processor that a communication may be initiated by deasserting its output pad **IRQ**.

8.2 EM6420 COMMUNICATION INTERFACES

Active EM6420 communication interface is selected by input pads $CIS_2 \dots CIS_0$ state, according to the Table 8-1.

CIS ₂	CIS₁	CIS₀	Active Communication Interface
0	0	0	Slave I ² C Interface
0	0	1	Slave 4-bit Parallel Interface
0	1	Х	Slave SPI Interface
1	х	Х	8-bit Direct Output Interface

As input pads $CIS_2 \dots CIS_0$ do not include pull resistors, they must be connected either to V_{ss} or V_{DD} in customer application. Selecting a communication interface will directly define the functionality of communication input pad CI_8 and IO pads $CIO_7 \dots CIO_0$, thus configuring IO pads either as input, output or bidirectional pad.

8.2.1 Slave I2C Interface

When slave I^2C interface is selected, communication pads CI_8 and $CIO_7 \dots CIO_0$ are configured for specific I^2C functions or define I^2C interface options, according to the Table 8-2:

	PAD		
Name	Alternate name	Туре	Specific function or defined option for slave I ² C interface
CIO ₀	SCL	Bidir	I ² C Serial Clock
CIO ₁	SDA	Bidir	I ² C Serial Data
CIO ₂	EN_IWPU	Input	Enable Internal Weak Pull-Up resistors
CIO ₃	EN_ISPU	Input	Enable Internal Strong Pull-Up resistors
CIO ₇ CIO ₄	A ₃ A ₀	Input	Low 4-bit I^2C Address. Default high 3-bits I^2C address are 100_B
Cl ₈	IRQ_Pol	Input	IRQ Polarity

Table 8-2 : Defined ^{2}C options and specific functions for communication pads **Cl**₈ and **ClO**₇ ... **ClO**₀ when slave ^{2}C interface is selected

This I²C interface fulfills the I²C specification (see [1] "*The I2C-Bus Specification – Version 2.1*", Philips Semiconductors, January 2000) with the following restrictions:

- Only Standard-mode and Fast-mode are supported. Thus, the maximum clock frequency is 400 kHz.
- Only standard 7-bit addressing is supported. The default values of the higher three bits are 100_B⁵ while the lower 4 bits are defined by A₃...A₀ input pads.
- General Calls are ignored.
- Each I²C bidir pad has a weak and a strong internal pull-up resistor. They can be enabled by connecting the **En_IWPU** and / or **EN_ISPU** input pads to V_{DD}. However, these internal pull-up resistors have been designed to minimize power consumption. As such, they can only drive capacitive bus loads up to 200 pF, even when both pull-up resistors are simultaneously enabled. For higher capacitive bus loads, external I²C pull-up resistors must be added.

⁵ Please contact EM Microelectronic-Marin SA for setting other values to the three higher address bits

The IRQ_Pol input defines the polarity of the IRQ output:

- The positive IRQ polarity is selected when the IRQ_Pol input is connected to V_{DD}, and a rising edge is generated when the EM6420 asserts its IRQ output.
- The negative IRQ polarity is selected when the IRQ_PoI input is connected to V_{SS}, and a falling edge is generated when the EM6420 asserts its IRQ output.

8.2.2 Slave SPI Interface

When slave SPI interface is selected, communication pads CI_8 and $CIO_7 \dots CIO_0$ are configured for specific SPI functions or define SPI interface options, according to the Table 8-3:

	PAD		
Name	Alternate name	Туре	Specific function or defined option for slave SPI interface
CIO ₀	SCK	Input	SPI S erial C loc K
CIO ₁	SDI	Input	SPI S erial D ata Input
CIO ₂	SDO	Output	SPI Serial Data Output
CIO ₃	nSS	Input	SPI Slave Select (active low)
CIO ₄	SRDY	Output	SPI Slave ReaDY (see below)
CIO₅	CK_Pol	Input	SPI ClocK Polarity (see below)
CIO ₆	CK_Pha	Input	SPI ClocK Phase (see below)
CIO ₇	MSB_First	Input	SPI data are sent MSB First (see below)
Cl ₈	IRQ_Pol	Input	IRQ Polarity (see below)

Table 8-3 : Defined SPI options and specific functions for communication pads **CI**₈ and **CIO**₇ ... **CIO**₀ when slave SPI interface is selected

This 4-wire SPI interface allows full-duplex, synchronous, serial communication between the host and the **EM6420**. The clock signal **SCK** generated by the host synchronizes data transmission.

The **nSS** input is the control signal used to enable the **EM6420** SPI interface. When set to V_{DD} , the **SDO** and the **SRDY** outputs are tri-stated, thus allowing another **EM6420** to take control of these lines in applications where several devices are used (see Figure 8-3).

Figure 8-3: Multi EM6420 configuration using the SPI interface

To accommodate the different serial communication requirements of hosts, the **EM6420** is able to control the timing relationship between the serial clock **SCK** and the transmitted data on **SDO** output.

Figure 8-4: Timing relationship between the serial clock SCK and the transmitted data

The **CK_Pol** input indicates to the **EM6420** the polarity of the **SCK** clock signal between transmissions:

- When set to V_{SS} , the **SCK** clock signal is set to V_{SS} between transmissions.
- When set to V_{DD} , the **SCK** clock signal is set to V_{DD} between transmissions.

The **CK_Pha** input defines which clock edge latches the data:

- When set to V_{SS}, the data on **SDI** input is latched at the first **SCK** clock edge. Data on **SDI** input and **SDO** output must change at the second **SCK** clock edge.
- When set to V_{DD}, the data on SDI input is latched at the second SCK clock edge. Data on SDI input and SDO output must change at the first SCK clock edge.

The **SRDY** output indicates to the host that the **EM6420** is ready to send and receive a data byte. The host must always check that **SRDY** is set to V_{DD} before generating the eight clocks needed to transfer a data byte. Data byte is sent MSB first when the **MSB_First** input is set to V_{DD} and LSB first otherwise.

The IRQ_Pol input defines the polarity of the IRQ output:

- The positive IRQ polarity is selected when the IRQ_Pol input is connected to V_{DD}, and a rising edge is generated when the EM6420 asserts its IRQ output.
- The negative IRQ polarity is selected when the IRQ_PoI input is connected to V_{SS}, and a falling edge is generated when the EM6420 asserts its IRQ output.

8.2.3 Slave 4-bit Parallel Interface

When slave 4-bit parallel interface is selected, communication pads CI_8 and $CIO_7 \dots CIO_0$ are configured for specific 4-bit parallel functions and define IRQ output pad polarity, according to the Table 8-4:

	PAD		
Name	Alternate name	Туре	Specific function for slave 4-bit parallel interface
CIO ₃ CIO ₀	D ₃ D ₀	Bidir	4-bit D ata bus
CIO ₄	CE	Input	Chip Enable control signal
ClO₅	RD / nWR	Input	ReaD / not WRite control signal
CIO ₆	CS	Input	Chip Select control signal
CIO ₇	SRDY	Output	Slave ReaDY
Cl ₈	IRQ_Pol	Input	IRQ Polarity

Table 8-4 :Defined IRQ polarity and specific functions for communication pads CI_8 and $CIO_7 \dots CIO_0$ when slave 4-bitparallel interface is selected

This parallel interface allows fast bidirectional and synchronous communication between the host and the **EM6420**.

The **CE** input is the control signal used to enable the **EM6420** parallel interface. When set to V_{SS} , the data lines $D_3 \dots D_0$ as well as the **SRDY** output are tri-stated, thus allowing another **EM6420** to take control of these lines in applications where several devices are used.

When the **CE** input is set to V_{DD}, the **EM6420** drives its **SRDY** output and also the data lines $D_3 \dots D_0$ if the **RD / nWR** input is set to V_{DD} too. The data lines $D_3 \dots D_0$ are driven by the host when the **RD / nWR** control signal is set to V_{SS}.

The **CS** input is the control signal used to effectively read or write a data nibble on the data bus. Data lines $D_3 \dots D_0$ can only change at the **CS** rising edge, and they are sampled at the **CS** falling edge.

The **SRDY** output indicates to the host that the **EM6420** is ready to send or receive a data byte. The host must always check that **SRDY** is set to V_{DD} before generating the two **CS** strobes needed to transfer a data byte. Data byte is sent high nibble first.

Figure 8-6: Typical data transfer using the parallel 4-bit interface.

The IRQ_Pol input defines the polarity of the IRQ output:

- The positive IRQ polarity is selected when the IRQ_Pol input is connected to V_{DD}, and a rising edge is generated when the EM6420 asserts its IRQ output.
- The negative IRQ polarity is selected when the IRQ_Pol input is connected to V_{SS}, and a falling edge is generated when the EM6420 asserts its IRQ output.

8.2.4 8-bit Direct Output Interface

When 8-bit direct output interface is selected, communication pads CI_8 and $CIO_7 \dots CIO_0$ are configured for specific 8-bit direct output functions and define Touch Screen IRQ condition, according to the Table 8-5:

	PAD		
Name	Alternate name	Туре	Specific function for 8-bit direct output interface
CIO ₇ CIO ₀	SStO ₇ SStO ₀	Output	Sensors Status Output port
Cl ₈	MAS	Input	Touch Screen Most Activated Sensor feature

Table 8-5 : Touch Screen feature and specific functions for communication pads **CI**₈ and **CIO**₇ ... **CIO**₀ when 8-bit direct output interface is selected

In this configuration, the **EM6420** can only provide sensors status on an 8-bit output port. As no application parameters can be received from the host processor, the **EM6420** defines itself the number of sensors to be scanned (up to 8 sensors) while the Touch Screen scan frequency is defined from configuration inputs CIS_0 and CIS_1 , according to Table 8-6. Therefore, the **EM6420** may also be used in a standalone configuration, i.e. without any host processor connection.

CIS ₁	CIS₀	Touch Screen scan frequency
0	0	2 Hz
0	1	8 Hz
1	0	32 Hz
1	1	128 Hz

Table 8-6 : Touch Screen scan frequency when 8-bit Direct Output interface is selected (Standalone configuration)

When 8-bit direct output interface is selected, the Touch Screen interface is always ON. Activating a sensor will directly asserts its corresponding bit on output port $SStO_7 \dots SStO_0$. When input pad **MAS** is connected to V_{DD}, only the bit corresponding to the most activated sensor is asserted, even if other sensors are also active. By default, the output port polarity is positive⁶, i.e. the **SStO_x** outputs are asserted when they are set to V_{DD}.

A pulse of at least 100 μ s is generated on the **IRQ** output every time a Touch Screen IRQ condition occurred. By default, the pulse polarity is negative and the open-drain with internal pull-up resistor configuration is selected by embedded software for the **IRQ** output pad⁷.

⁶ Please contact EM Microelectronic-Marin SA to change the output port polarity from positive to negative, in order to have the **SStO**_x outputs set to V_{SS} when they are asserted

⁷ Please contact EM Microelectronic-Marin SA to change the IRQ polarity from negative to positive and to select the push-pull instead of the open-drain configuration for the **IRQ** output pad

8.2.5 Communication interface initialization.

At start-up, the **EM6420** can determine which communication interface is active. It then sets the required communication options according to the communication pads CI_8 and $CIO_7 \dots CIO_0$ state. Finally, the **EM6420** IRQ output pad is activated and special code 18_H is returned in the next *getStatus* command, thus signaling to the host controller that it is ready to accept communication frames. See Table 8-16 on page 39 for a complete list of the possible special codes.

When the positive IRQ polarity is used, the push-pull configuration is selected by the embedded software for the **IRQ** output pad and the timings shown in Figure 8-8 are generated at startup.

Figure 8-8 : IRQ output startup timings when positive IRQ polarity is selected by embedded software

When the negative IRQ polarity is used, the open-drain with internal pull-up resistor configuration is selected by the embedded software for the **IRQ** output pad and the timings shown in Figure 8-9 are generated at startup.

Figure 8-9 : IRQ output pad start-up timings when negative IRQ polarity is selected

8.3 EM6420 COMMANDS

Communication commands interpreted by the EM6420 can be grouped into 3 command sets:

• The first command set includes all single byte commands, as described in Table 8-7. These commands are mainly used to send a new parameter value to the **EM6420**.

Command name	Command description
<u>startTS</u>	Start the Touch Screen interface
stopTS	Stop the Touch Screen interface
setTSMode	Select the Touch Screen running features
selectBaseSettings	Select the base settings as the current settings
selectAltSettings	Select the alternate settings as the current settings
setBaseScanFreq	Set the Touch Screen base scan frequency
setAltScanFreq	Set the Touch Screen alternate scan frequency
setBaseHiSensNb	Set the base highest sensor number to be scanned
setAltHiSensNb	Set the alternate highest sensor number to be scanned
setBaselRQCond	Set the base IRQ condition
setAltIRQCond	Set the alternate IRQ condition
<u>next</u>	Request the next data byte within a multiple data byte read sequence (SPI interface only)
end	End a multiple data byte read sequence (SPI interface only)

Table 8-7 : EM6420 single byte command set

• The second command set includes two-byte commands, as described in the following table. These commands are used to get any parameter value from the **EM6420** or to send a more than 4-bit parameter value to the **EM6420**.

Command name	Command description	
<u>setThreshold</u>	Set Touch Screen threshold	
getAppSettings	Get current application settings	

• The third command set includes multiple byte commands, as described in the following table. These commands are used to get multiple parameters from or to send multiple parameters to the **EM6420**, thus reducing communication traffic and overall system consumption.

Command name Command description		
getVersion	Get EM6420 HW and SW version	
getStatus	Get EM6420 status	

Table 8-9 : EM6420 multiple bytes command set

8.3.1 Command startTS

This command starts the **EM6420** Touch Screen interface.

Figure 8-10 : startTS command format

At power-up, the Touch Screen interface is stopped. Some settings must be defined before the Touch Screen is started, and cannot be changed later on. Therefore, the commands **setTSMode**, **setBaseScanFreq**, **setBaseHiSensNb**, **setBaseIRQCond** and **setThreshold**, if used, must be sent before the **startTS** command. Attempting to send one of these commands while the Touch Screen interface is running will cause the **EM6420** to assert its **IRQ** output and return error code $06_{\rm H}$.

The Touch Screen base settings are checked when the Touch Screen interface is started. If they are invalid, the **EM6420** asserts its **IRQ** output and returns error code 02_{H} .

During the Touch Screen startup, the **EM6420** checks the presence of each sensor and establishes a sensor map. If the total number of sensors wasn't specified before the *startTS* command (with the *setBaseHiSensNb* command), the device scans all sixteen sensors and determines the number of sensors by itself. To be valid, the sensor map must have at least sensor 0 connected and there must be no lack between the first and the last used sensor. If the highest sensor number was specified, the following sensors will never be scanned. If the **EM6420** detects a problem with the sensor map, it asserts its **IRQ** output and returns error code $01_{\rm H}$.

If the alternate settings are already selected before the *startTS* command is used, that is if the command *selectAltSettings* was sent before the *startTS* command, the EM6420 will automatically apply the alternate settings immediately after the Touch Screen startup. However, initialization of the sensors is always performed according to the base settings. Sending the *startTS* command while the Touch Screen interface is already running will restart it according to the base settings for initialization, and then it will use the previous selected settings.

Sensors that are already activated during the Touch Screen startup procedure will not be detected until they are released and the **EM6420** has had enough time to initialize them properly.

8.3.2 Command stopTS

This command stops the EM6420 Touch Screen interface.

Figure 8-11 : **stopTS** command format

This command has no effect if the Touch Screen interface is already stopped. Stopping the Touch Screen interface allows the host to change the base settings with the commands **setTSMode**, **setBaseScanFreq**, **setBaseHiSensNb**, **setBaseIRQCond** and **setThreshold**. However, if some sensors are activated during the next startup procedure (initiated by the **startTS** command), they will not be detected by the **EM6420** until they are released and the **EM6420** has had enough time to initialize them properly.

8.3.3 Command setTSMode

This command sets the **EM6420** Touch Screen running features.

Table 8-10 gives the mapping between the **TSM** bits and the selected Touch Screen running features.

Bit	Behavior if bit is set	Behavior if bit is cleared
0	EM6420 works in Ultra Low Power mode	EM6420 works in Low Power mode
1	Each sensor sensitivity is continuously optimized, taking into account actual room temperature and supply voltage	Each sensor sensitivity is optimized only when the Touch Screen interface is started
2	Each sensor has its own activation threshold which is continuously adapted to sensor sensitivity	All sensors have the same activation threshold which is a fixed value

Table 8-10 : Mapping between the **TSM** bits and the Touch Screen running features

The Touch Screen running features must be defined before starting the Touch Screen interface. By default, the **TSM** bits values are 111_B when 8-bit direct output interface is selected and 110_B when any other communication interface is selected⁸.

Attempting to modify the Touch Screen running features while the Touch Screen interface is running will cause the **EM6420** to assert its **IRQ** output and return the error code 06_{H} .

8.3.4 Command selectBaseSettings

This command selects the basic settings as the Touch Screen current settings.

The Touch Screen base settings can be defined by **setBaseScanFreq**, **setBaseHiSensNb** and **setBaseIRQCond** commands. If used, these commands must be sent before the Touch Screen interface is started. If they aren't used, default values are supplied for the base settings. At power-up, the base settings (as opposed to the alternate settings) are selected, so that this command is only needed after a **selectAltSettings** command, in order to switch back to the base settings.

The Touch Screen base settings are checked when the Touch Screen interface is started. If they are invalid, the **EM6420** asserts its **IRQ** output and returns error code $02_{\rm H}$. Attempting to change the base settings while the Touch Screen interface is running will cause the **EM6420** to assert its **IRQ** output and return error code $06_{\rm H}$.

It is possible to switch from the alternate settings to the base settings at any time, even when the Touch Screen interface is running. In that case, the base settings are applied immediately. This command has no effect if the base settings are already selected.

8.3.5 Command selectAltSettings

This command selects the alternate settings as the Touch Screen current settings.

Figure 8-14 : selectAltSettings command format

The Touch Screen alternate settings are defined by *setAltScanFreq*, *setAltHiSensNb* and *setAltIRQCond* commands. They can be modified when the Touch Screen interface is stopped as well as when it's running even if some other alternate settings are currently active.. However, the new alternate settings will not take effect immediately after one of

⁸ Please contact EM Microelectronic-Marin SA to change the default values of **TSM** bits 1 and 2

these three commands. Instead, if the Touch Screen interface is running, the new alternate settings will be applied at the next occurrence of a *setAltSettings* command. If the Touch Screen interface is stopped and the alternate settings are already selected, they will be applied directly after the next *startTS* command.

Each alternate parameter that has never been explicitly set through the appropriate command, when applied, will be substituted by the corresponding base settings. Therefore, toggling between base and alternate settings without having ever sent any of the three **setAlt...** commands won't have any effect.

The validity of the new alternate settings is checked when they are applied, that is either after a *selectAltSettings* or a *startTS* command. If they are invalid, the **EM6420** asserts its **IRQ** output and returns error code 03_{H} .

8.3.6 Command setBaseScanFreq

This command sets the basic scan frequency of Touch Screen sensors.

Figure 8-15 : setBaseScanFreq command format

Table 8-11 lists valid values for parameter **SF**. Note that a 64 Hz or 128 Hz scan frequency can only be used with a reduced number of sensors, i.e. 8 at 64 Hz and 4 at 128 Hz.

SF	Touch Screen scan frequency	SF	Touch Screen scan frequency
000 _B	1 Hz	100 _в	16 Hz
001 _B	2 Hz	101 _в	32 Hz
010 _B	4 Hz	110 _B	64 Hz
011 _B	8 Hz	111 _B	128 Hz

Table 8-11 : Selection of Touch Screen scan frequency

The **setBaseScanFreq** command, if used, must be sent before the Touch Screen interface is started. If the **setBaseScanFreq** command isn't used, the base scan frequency is 8 Hz by default.

Attempting to modify the base scan frequency while the Touch Screen interface is running will cause the **EM6420** to assert its **IRQ** output and return error code 06_{H} .

8.3.7 Command setAltScanFreq

This command sets the alternate scan frequency of Touch Screen sensors.

Figure 8-16 : setAltScanFreq command format

Table 8-12 lists valid values for parameter **ASF**. Note that a 64 Hz or 128 Hz scan frequency can only be used with a reduced number of sensors, i.e. 8 at 64 Hz and 4 at 128 Hz. Moreover, the alternate scan frequency cannot be greater than the base scan frequency. The **EM6420** will assert its **IRQ** output and return error code $03_{\rm H}$ if these conditions are not met when the alternate settings are applied.

uency

ASF	Touch Screen scan frequency		ASF	Touch Screen scan freq
000 _B	1 Hz		100 _B	16 Hz
001 _B	2 Hz		101 _в	32 Hz
010 _B	4 Hz		110 _в	64 Hz
011 _B	8 Hz		111 _B	128 Hz

Table 8-12 : Selection of alternate Touch Screen scan frequency

The alternate scan frequency can be modified at any time, even if some other Touch Screen alternate settings are already selected. However, the new alternate scan frequency will be taken into account only next time a *setAltSettings* command is issued. By default, if the *setAltScanFreq* command has never been sent, the alternate scan frequency is the same as the base scan frequency (no change in scan frequency when switching from base to alternate settings).

8.3.8 Command setBaseHiSensNb

This command sets the highest sensor number to be scanned when base settings are selected. Sensors are numbered from 0 to 15.

Figure 8-17: setBaseHiSensNb command format

Valid values for parameter **HSN** range from 0 to 15, allowing the host to select from one to sixteen sensors.

The base highest sensor number can only be defined before the Touch Screen interface is started. Attempting to modify the base highest sensor number while the Touch Screen interface is already running will cause the **EM6420** to assert its **IRQ** output and return error code $06_{\rm H}$.

If the base highest sensor number hasn't been defined when the Touch Screen interface is started, the **EM6420** will determine the number of connected sensors by itself. Otherwise, if the number of sensors has been defined, it will check that these sensors are effectively connected. An error in the sensor map (due to inappropriate settings or to sensors failure) will cause the **EM6420** to assert its **IRQ** output and generate error 01_H at the next *startTS* command.

8.3.9 Command setAltHiSensNb

This command sets the alternate highest sensor number to be scanned.

Figure 8-18 : setAltHiSensNb command format

Valid values for parameter **AHSN** range from 0 to 15, allowing the host to select from one up to sixteen sensors. The alternate highest sensor number must not be greater than the highest sensor number selected in the base settings.

The alternate highest sensor number can be modified at any time, even if some other alternate settings are currently being used. However, the new alternate highest sensor number will be taken into account only next time a *setAltSettings* command is issued. By default, if the *setAltHiSensNb* command has never been sent, the alternate sensor number is the same as the base sensor number (no change in number of sensors when switching from base to alternate settings).

8.3.10 Command setBaseIRQCond

This command sets the basic Touch Screen IRQ condition.

Figure 8-19 : setBaseIRQCond command format

Table 8-13 gives the mapping between **IC** parameter values and the selected Touch Screen IRQ condition.

IC	Touch Screen IRQ condition
00 _B	EM6420 output pad IRQ is asserted at the end of each sensors scan
01 _B	EM6420 output pad IRQ is asserted at the end of a sensors scan, when at least one sensor state has changed
10 _B	EM6420 output pad IRQ is asserted at the end of a sensors scan, when either at least one sensor is active or at least one sensor state has changed
11 _B	EM6420 output pad IRQ is asserted at the end of a sensors scan, when the most activated sensor has changed

Table 8-13 : Selection of EM6420 IRQ condition

The Touch Screen IRQ condition defines under which circumstances the **EM6420** will assert its **IRQ** output to signal events happening on the Touch Screen. The **IRQ** output remains asserted until the new Touch Screen state is returned in response to a *getStatus* command.

The base Touch Screen IRQ condition should be defined before starting the Touch Screen interface. Two separate default values exist when 8-bit direct output interface is selected: the default value is 11_B when **MAS** input is asserted and 01_B when **MAS** input is deasserted or when any other communication interface is selected⁹.

Attempting to modify the base IRQ condition while the Touch Screen interface is running will cause the **EM6420** to assert its **IRQ** output and return error code 06_{H} .

8.3.11 Command setAltIRQCond

This command set the alternate Touch Screen IRQ condition.

Figure 8-20 : setAltIRQCond command format

Table 8-14 gives the mapping between **AIC** parameter values and the selected Touch Screen IRQ condition.

When alternate settings are selected, the alternate Touch Screen IRQ condition defines under which circumstances the **EM6420** will assert its **IRQ** output to signal events happening on the Touch Screen. The **IRQ** output remains asserted until the new Touch Screen state is returned in response to a *getStatus* command.

The alternate Touch Screen IRQ condition can be modified at any time, even if some other alternate settings are currently being used. However, the new alternate IRQ condition will be taken into account only next time a *setAltSettings* command is issued. By default, if the *setAltIRQCond* command has never been sent, the alternate IRQ condition is the same as the base IRQ condition (no change in IRQ generation mode when switching from base to alternate settings).

Copyright ©2012, EM Microelectronic-Marin SA 6420-DS.doc, Version 4.0 , 4-Jun-12

⁹ Please contact EM Microelectronic-Marin SA to change the default Touch Screen IRQ condition values

AIC	Touch Screen IRQ condition
00 _B	EM6420 output pad IRQ is asserted at the end of each sensors scan
01 _B	EM6420 output pad IRQ is asserted at the end of a sensors scan, when at least one sensor state has changed
10 _B	EM6420 output pad IRQ is asserted at the end of a sensors scan, when either at least one sensor is active or at least one sensor state has changed
11 _B	EM6420 output pad IRQ is asserted at the end of a sensors scan, when the most activated sensor has changed

When alternate settings are selected, the alternate Touch Screen IRQ condition defines under which circumstances the **EM6420** will assert its **IRQ** output to signal events happening on the Touch Screen. The **IRQ** output remains asserted until the new Touch Screen state is returned in response to a *getStatus* command.

The alternate Touch Screen IRQ condition can be modified at any time, even if some other alternate settings are currently being used. However, the new alternate IRQ condition will be taken into account only next time a *setAltSettings* command is issued. By default, if the *setAltIRQCond* command has never been sent, the alternate IRQ condition is the same as the base IRQ condition (no change in IRQ generation mode when switching from base to alternate settings).

8.3.12 Command next (SPI protocol only)

This is a dummy command that has to be sent while fetching all the bytes of a response, but the last one (see § 8.3.13 and also § 9.2). This command will request the next output byte to be prepared on the **EM6420**, thus indicating that the transfer isn't finished. The *next* command may not be used when the communication bus is idle and no response is expected. If the **EM6420** receives a *next* command in such circumstances, it will assert its **IRQ** output and return error code $05_{\rm H}$.

Figure 8-21 : next command format

This command can only be used when SPI communication interface is selected, and will cause the EM6420 to assert its IRQ output and return error code $05_{\rm H}$ if used with any other communication protocol.

8.3.13 Command end

This is a dummy command that has to be sent in order to fetch the last desired byte of a response and close the transfer. It indicates the end of a SPI communication frame and lets the **EM6420** stop sending data (see § 9.2)

Figure 8-22 : end command format

It is not necessary to send an *end* for each intermediate command when several commands are chained. The following command code can be sent directly in place of the *end* code. That way, the last response byte to the previous command will be retrieved during the transfer of the following command code, and the reception of a new command will automatically close the previous one on the **EM6420** side.

The *end* command may not be used when the communication bus is idle and no response is expected. If the **EM6420** receives an *end* command in such circumstances, it will assert its **IRQ** output and return error code $05_{\rm H}$. Moreover, this command can only be used in SPI mode, and will cause the **EM6420** to assert its **IRQ** output and return error code $05_{\rm H}$ if used with any other communication protocol.

8.3.14 Command setThreshold

This command sets the initial sensor activation threshold.

Figure 8-23 : setThreshold command format

Threshold values must be in the range from 3 to 200. Invalid values will cause the **EM6420** to assert its **IRQ** output and return error code $04_{\rm H}$. The default threshold value is 6^{10} .

The threshold value can only be defined before the Touch Screen interface is started. Attempting to modify that value while the Touch Screen interface is already running will cause the **EM6420** to assert its **IRQ** output and return error code $06_{\rm H}$.

8.3.15 Command getAppSettings

This command gets the current application settings, i.e. the current Touch Screen scan frequency and the current highest scanned sensor number.

Valid values for parameter **CHSN** range from 0 to 15, thus indicating a number of scanned sensors comprised between 1 and 16. Note that the current sensor number could also be unknown, if it hasn't been specified by the host processor and the Touch Screen has not been started yet. In that case, the flag **U** is set, and **CHSN** contains the highest possible sensor number, depending on the scan frequency, i.e.15 at scan frequencies up to 32 Hz, 7 at 64 Hz and 3 at 128 Hz.

Table 8-15 lists valid values for parameter **CSF**. Note that a 64 Hz or 128 Hz scan frequency can only be obtained with a reduced number of sensors, i.e. 8 at 64 Hz and 4 at 128 Hz.

CSF	Touch Screen scan frequency				
000 _B	1 Hz				
001 _B	2 Hz				
010 _B	4 Hz				
011 _B	8 Hz				

CSF	Touch Screen scan frequency
100 _B	16 Hz
101 _B	32 Hz
110 _B	64 Hz
111 _B	128 Hz

Table 8-15 :	Current Touch	n Screen scan	frequency
--------------	---------------	---------------	-----------

8.3.16 Command getVersion

This command gets the hardware as well as the software version of the EM6420.

Copyright ©2012, EM Microelectronic-Marin SA 6420-DS.doc, Version 4.0 , 4-Jun-12

¹⁰ Please contact EM Microelectronic-Marin SA to change the default threshold value

Figure 8-25 : getVersion command format

The hardware version is a single 8 bits value. The software version is composed of two nibbles: the **SMV** nibble is the software major version and the **SRN** nibble is the software revision number.

8.3.17 Command getStatus

This command gets the **EM6420** status and deasserts the **IRQ** output pad, if asserted. If the **IRQ** was not asserted, the **getStatus** will return null bytes.

<u>NB:</u> For better performance, do not send *getStatus* requests while no IRQ is asserted. In particular, do not try to read the Touch Screen status by sending this command repeatedly, as it will only slow down the **EM6420** and increase its power consumption.

Figure 8-26 : getStatus command format

Flag I (Interrupt) is set if the EM6420 IRQ output was asserted when a *getStatus* command was received. In a multi EM6420 configuration (all IRQ output pads connected to a unique host IRQ input) this flag allows the host to determine which EM6420 device has asserted the IRQ line.

When flag I is set, flag S (Special) defines which kind of information is returned to the host processor:

When flag **S** is cleared, a Touch Screen IRQ condition occurred. In this case, parameter $Data_0$ indicates the number of the most activated sensor, parameter $Data_1$ gives the state of sensors 0 to 7 and parameter $Data_2$ gives the state of sensors 8 to 15, as shown in Figure 8-27.

Figure 8-27 : getStatus command format when flag I is set and flag S is cleared

When command parameter **S** is set, the **EM6420** returns device status information, mainly error codes, but also the READY status after device startup. In this case, parameter **Data**₀ gives a special code which valid values are listed in Table 8-16. For some special codes, parameters **Data**₁ and **Data**₂ may contain more information as shown in Figure 8-28. For special codes that do not provide complementary information, these parameters are null.

Figure 8-28 : getStatus command format when flags I and S are set

The flag V (oVerrun) indicates that the host has missed one or more significant status messages. This happens when the host takes too much time to react to an **IRQ**, and the **EM6420** wants to signal another event while the **IRQ** line is still active. In this case, the previous important message is deleted, and the host won't be able to retrieve it anymore. It will only have an indication, through the overflow bit, that at least one message was lost. In case of an overrun, the retrieved message is the most recent message containing the **S** flag. If none of them contains the **S** flag, it is the most recent Touch Screen message.

Table 8-16 : EM6420 special codes description

9. EM6420 COMMUNICATION FRAMES

All **EM6420** commands may be sent by the host using one of the two following communication frames: A Write-Only (WO) communication frame is used to send commands that do not return any values to the host.

- A Write-Read (WR) communication frame is used to send commands that return one or more values to the host.
- Depending of the selected communication interface, these two communication frames may slightly differ, as explained in details hereafter.

9.1 SLAVE I²C COMMUNICATION FRAME

Each I^2C communication frame must begin with a START condition followed by an I^2C header and must end with a STOP condition.

Figure 9-1: I2C WO and WR communication frames

When several commands are sent to the same EM6420 device, the STOP condition is not necessarily be generated between the concatenated communication frames.

9.2 SLAVE SPI COMMUNICATION FRAME

As the SPI is a full duplex interface, WO and WR communication frames looks quite the same. However, the host should ignore the values returned by the **EM6420** in a WO communication frame.

Figure 9-3: SPI WO communication frames when CK_Pha input is set to VDD

In a WR communication frame, the **EM6420** return the requested values as long as it receives a *next* command code. Receiving any other command code will terminate the current command and immediately start the new one.

Figure 9-4: SPI WR followed by a WO communication frame when CK_Pha input is set to VSS

The nSS input of the EM6420 does not need to be deasserted between two communication frames.

9.3 SLAVE 4-BIT PARALLEL COMMUNICATION FRAME

The CE input of the EM6420 does not need to be deasserted between two communication frames.

EM6420

The falling edge of the RD / nWR input defines the end of a WR communication frame, and therefore the end of the current command.

Figure 9-6: 4-bit parallel WR followed by a WO communication frame

10. TYPICAL APPLICATIONS

Figure 10-1: EM6420 typical application powered by a 3.3 V supply voltage and using the SPI communication interface

Figure 10-2: EM6420 typical application powered by a 1.2 V supply voltage and using the I2C communication interface

For better ESD protection in customer application, it is strongly recommended to connect the bulk of the EM6420 to $V_{\text{SS}}.$

11. PAD LOCATION DIAGRAM

Chip dimensions		
Die size :	X = 2'130 μm ± 100 μm	(83.86 mils ± 3.94 mils)
	Y = 2'224 μm ± 100 μm	(87.56 mils ± 3.94 mils)
Die thickness :	279.4 µm ± 25.4 µm	(10 mils ± 1 mils)

Table 11-1: EM6420 chip dimensions

Pad Number	Pad Name	X [µm]	Y [µm]	Pad Number	Pad Name	X [µm]	Y [µm]
1	Vss	312.000	143.625	22	TIC	1'818.000	2'080.375
2	C _{BL}	432.000	143.625	23	тск	1'698.000	2'080.375
3	Свн	552.000	143.625	24	LSV	1'578.000	2'080.375
4	V _{CP}	672.000	143.625	25	IRQ	1'458.000	2'080.375
5	V _{DDA}	792.000	143.625	26	Cl ₈	1'290.000	2'080.375
6	S 15	912.000	143.625	27	CIO7	1'170.000	2'080.375
7	S ₁₁	1'132.000	143.625	28	CIO ₆	1'050.000	2'080.375
8	S ₁₄	1'252.000	143.625	29	CIO₅	930.000	2'080.375
9	S ₁₀	1'472.000	143.625	30	CIO₄	810.000	2'080.375
10	S ₇	1'592.000	143.625	31	En	690.000	2'080.375
11	S_6	1'812.000	143.625	32	V _{DD}	500.000	2'080.375
12	S ₅	1'986.375	312.000	33	CIO ₃	143.625	1'368.000
13	S ₄	1'986.375	532.000	34	CIO ₂	143.625	1'248.000
14	S ₉	1'986.375	652.000	35	CIO ₁	143.625	1'128.000
15	S ₁₃	1'986.375	872.000	36	CIOo	143.625	960.000
16	S₃	1'986.375	992.000	37	CIS ₂	143.625	792.000
17	S ₁₂	1'986.375	1'212.000	38	CIS₁	143.625	672.000
18	S ₂	1'986.375	1'332.000	39	CIS₀	143.625	552.000
19	S₅	1'986.375	1'552.000	40	V _{DDD}	143.625	432.000
20	S ₁	1'986.375	1'672.000	41	V _{DD}	143.625	312.000
21	S ₀	1'986.375	1'892.000				

X, Y coordinates refers to the center of the pads. The origin (0, 0) is the bottom left corner of the circuit scribe line.

	Table	11-2 :	EM6420	pads	coordinates
--	-------	--------	--------	------	-------------

Standard die version	
Pads opening	72 µm x 72 µm
Minimum pad pitch :	120 µm

Gold bump version	
Bump size :	68 μm x 68 μm ± 5 μm
Bump height :	17.5 μm ±3μm
Bump height co-planarity	< 2 µm within die
	< 4 µm within wafer
Bump roughness	< 2 µm
Bump hardness :	30 – 90 HV (soft bump)
Minimum bump space	52 µm edge to edge
Shear force :	> 7.2 mg / µm ²
PI thickness	No PI layer

Table 11-3 : EM6420 pads and gold bumps additional information

12. PACKAGE INFORMATION

Figure 12-1 : 40-pin Micro Lead Frame 2 Pin Assignment (TOP view)

The exposed pad of the package is connected to the bulk of the device

Symbol	Dimensions			
Symbol	Min	Nom	Max	
A	0.80	0.90		
A1	0.00 0.02 0.05			
A3	0.20 REF			
D	6.00 BSC			
D2	4.00 4.10 4.20		4.20	
E	6.00 BSC			
E2	4.00 4.10 4.20			

Symbol	Dimensions			
Symbol	Min	Nom	Max	
N ¹¹	40			
Nd ¹²	10			
Ne ¹³	10			
е	0.50 BSC			
L	0.35	0.40	0.45	
L1	0.00 0.1		0.15	
b	0.18	0.25	0.30	

All dimensions are in mm

¹¹ N is the number of terminals

¹² Nd is the number of terminals in X-direction

¹³ Ne is the number of terminals in Y-direction

12.2 SAWN 36-PIN MICRO LEAD FRAME 2 – 5 X 5 MM BODY

Figure 12-2 : 36-pin Micro Lead Frame 2 Pin Assignment (Top View)

SIDE VIEW

Symbol	Dimensions			
Symbol	Min Nom		Max	
А	0.80	0.90		
A1	0.00 0.02 0.05			
A3	0.20 REF			
D	5.00 BSC			
D2	3.50 3.60 3.70			
E	5.00 BSC			
E2	3.50 3.60 3.70			

All dimensions are in mm

DETAIL «A»

Symbol	Dimensions			
Symbol	Min Nom		Max	
N ¹⁴	36			
Nd ¹⁵	9			
Ne ¹⁶	9			
е	0.40 BSC			
L	0.35	0.40	0.45	
L1	0.00 0.15		0.15	
b	0.15 0.20 0.25			

¹⁴ N is the number of terminals

¹⁵ Nd is the number of terminals in X-direction

¹⁶ Ne is the number of terminals in Y-direction

12.3 SAWN 32-PIN MICRO LEAD FRAME 2 - 5 X 5 MM BODY

Figure 12-3 : 32-pin Micro Lead Frame 2 Pin Assignment (Top View)

SIDE VIEW

Symbol	Dimensions			
Symbol	Min	Nom	Max	
А	0.80 0.85 0.90			
A1	0.00 0.02 0.05			
A3	0.20 REF			
D	5.00 BSC			
D2	3.50 3.60 3.70			
E	5.00 BSC			
E2	3.50 3.60 3.70			

All dimensions are in mm

DETAIL «A»

Symbol	Dimensions			
Symbol	Min Nom		Мах	
N ¹⁷	32			
Nd ¹⁸	8			
Ne ¹⁹	8			
е	0.50 BSC			
L	0.35 0.40 0.45		0.45	
L1	0.00 0.15		0.15	
b	0.18 0.25 0.30			

 $^{^{\}rm 17}\,\rm N$ is the number of terminals

¹⁸ Nd is the number of terminals in X-direction

¹⁹ Ne is the number of terminals in Y-direction

13. ORDERING INFORMATION

Part number	Delivery Form
EM6420V3WS10	Sawn wafer, 10 mils thickness
EM6420V3WS10E	Sawn wafer with gold bumps, 10 mils thickness
EM6420V3LF40D+	40-pin sawn Micro Lead Frame 2 (40-pin MLF2), Tray
EM6420V3XXXX+	For other options please contact the EM Microelectronic-Marin SA sales representative.
EM6420V4WS10	Sawn wafer, 10 mils thickness

Part number	Hardware version	Software version	I ² C Multi Chip mode	Minimum scan frequency
EM6420V3WS10				
EM6420V3WS10E	2	4.0	Currented	4
EM6420V3LF40D+	3	1-0	Supported	1 HZ
EM6420V3XXXX+				
EM6420V4WS10	3	2-0	Supported	1 Hz

EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not authorized for use as components in life support devices or systems.