

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

1 www.emmicroelectronic.com

 Application Note 431

Title: EMDB410 RFID Reader Firmware Description
Product Family: RFID
Part Number: EMDB410 – EM4294 RFID Reader

Keywords: ISO15693 - ISO14443 Type A,B – EM4294

Date: March 29, 2007

1. INTRODUCTION ..2

2. ABBREVIATIONS ..2

3. ENVIRONMENT SETUP ..2

4. FIRMWARE DESCRIPTION...3

4.1. FIRMWARE PHILOSOPHY..3
4.2. SOURCE FILES..3
4.3. MICROCONTROLLER START-UP ...4
4.4. LEVEL 3 ...4
4.5. CUSTOM LEVEL...4
4.6. LEVEL 4 ...5

4.6.1. PC -> Reader communication ..5
4.6.2. Reader -> PC communication ..5

5. ISO15693 COMMUNICATION ROUTINES..6

5.1. UPLINK ROUTINE (READER TO TAG) ...6
5.2. CAPTURE ROUTINES ...6

5.2.1. ASK decode routine..6
5.2.2. FSK capture routine..6

5.3. DATA EXTRACTION ...7

6. WATCHDOG (HANDLING EAS)..7

7. EM4006 DATA RECEPTION..7

7.1. CAPTURE ROUTINE...7
7.2. DATA EXTRACTION ...7

8. ISO14443 COMMUNICATION ROUTINES..7

8.1. UPLINK ROUTINES (READER TO TAG) ...7
8.1.1. ISO14443 Type A Uplink routine..7
8.1.2. ISO14443 Type B Uplink routine..7

8.2. CAPTURE ROUTINES ...7
8.2.1. ISO14443 Type A Capture routine ...7
8.2.2. ISO14443 Type B Capture routine ...8

8.3. DATA EXTRACTION ...8
8.3.1. ISO14443 Type A Data extraction..8
8.3.2. ISO14443 Type B Data extraction..8

9. EM4294 CRYPTO ENGINE COMMUNICATION ...8

9.1. WARM RESET ...8
9.2. PPS COMMAND ..9
9.3. SINGLE BLOCK WRITE AND BLOCK READ ..9

10. DEBUG FUNCTIONS ...9

11. RESOURCE UTILISATION..9

EM MICROELECTRONIC - MARIN SA

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

2 www.emmicroelectronic.com

1. Introduction

EMDB410 Reader is a base station for communication
with a selected set of 13.56MHz transponders. The
reader supports the EM Microelectronic-Marin ISO15693
transponder ICs and some ISO14443 ICs. Application
note AN431 describes programmer notes concerning the
EMDB410 Reader firmware code and should be treated
as extending information to the “EMDB410 RFID Reader
– Description of Firmware protocol” document which
chapters are referred to.

The source files can be ported to another microcontroller
family that provides sufficient performance, three
hardware counters, UART interface and several
independent I/O pins.

EMDB410 Reader firmware source files are written in
C programming language and targeted for ATMega16
microcontroller family. The firmware communicates with
the respective software application whose source files
are also available.

EMDB410 Reader was derived from the EMDB410
Reader. EMDB410 firmware is close to the EMDB408
firmware in terms of the firmware code functions and
source architecture. Most of the EMDB408 commands
work in the same way as the EMDB410 commands.

EMDB410 versus EMDB408 difference

EMDB410 Reader differs from EMDB408 Reader in the
following features;

• EMDB410 is USB powered only while
EMDB408 requires the power supply adapter.

• EMDB410 is based on EM4294 multi crypto HF
reader chip while the EMDB408 uses separate
EM4094 IC (RF front-end) and external SIM
card crypto.

• EMDB410 uses an ATMega16 microcontroller
while EMDB408 uses ATMega64
microcontroller. Because of the smaller code
and SRAM memory size provided by the
ATMega16 microcontroller, the EMDB410
firmware is split into two different firmware
binary streams compiled from the unified source
files (one for ISO15693+EM4006
communication, one for ISO14443
communication), EMDB408 firmware is a single
unified binary stream only. ATMega16 firmware
memory usage had to be optimized too.

2. Abbreviations

ACK – ACKnowledge status byte
AFE – Analogue Front End
ASK – Amplitude Shift Keying
ATR – Answer To Reset
BPSK – Binary Phase Shift Keying
CRC – Cyclic Redundancy Check
CTC – Clear Timer on Compare
DES – Data Encryption Standard
EAS – Emergency Alert System
EGT – Extra Guard Time
EOF – End Of Frame
ETU – Elementary Time Unit
FSK – Frequency Shift Keying
PPS – Protocol and Parameter Selection
SOF – Start Of Frame
UART – Universal Asynchronous Receiver/Transmitter
USB – Universal Serial Bus
EMDB408 – EM4094 RFID Reader
EMDB410 – EM4294 RFID Reader

3. Environment setup

Following tools were used:

1. Compilation - the whole code can be compiled
via make/gcc port for ATMega16 chip family.
See Readme.txt included in source package file
for actual compiler release used.

2. Programming
1
 - the ATMega16 chip is equipped

with standard serial programming interface. It
can be programmed via Xilinx Parallel Cable III+
(and compatible) and several programming
utilities. For example, see http://www.elm-
chan.org for avrsp utility, or uisp utility (included
in the WinAVR package). When appropriate
firmware is already present in the ATMega16
chip, an update of application part firmware can
be performed by the bootloader part of the
firmware via USB port until the boot_ld.c file
content is modified.

1 ATMega16 chip configuration (fuse bits) needs to be
set (e.g., see fuse.bat in the source package) before first
programming. FTDI FT232BL USB<->Serial Bus
converter IC device descriptor needs to be configured
(MProg utility) to allow the requested SUB power
consumption (typically 250mA), before the first switching
the RF field ON.

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

3 www.emmicroelectronic.com

4. Firmware Description

Firmware architecture is split into following levels, each
containing specific functions.
1. Level1 - defines decoding routines

2. Level2 - defines low level data send and data
extraction routines

3. Level3 - defines high level data transformations and
main loop body, bootloader, and simcard functions

4. Level4 - defines UART communication routines

4.1. Firmware philosophy

Main loop (level3) periodically invokes an analysis of the
UART receive buffer (level4) and performs particular
actions on valid messages. All performed actions or
detected errors result to at least one response message.
UART data reception is performed asynchronously. No
next message analysis is invoked until the complete
response on previous action is sent out.

Actions of regular commands communicating with the tag
are controlled by means of hardware counters (counters
T0, T1, T2) that are incremented by microcontroller clock
signal. Some routines are triggered by interrupt, routines
requiring higher performance are coded a polling way.
Send (level2) and capture (level1) actions are expected
to run mutually exclusive as same as other heavy load
operations.

Uplink (send) routines usually expect the command bytes
to be prepared by the application software. All the
routines usually prepare the appropriate bit stream into
the data_buffer array.

To separate high performance capture routines from off-
line data extraction, the capture actions transform each
captured information item to the pair [data bit, validity bit].
Each pair emitted by capture routine is stored by the
level1/store_bit function into the capture array indexed
by capture_cnt and capture_bit_count variables.
Capture array is initialised before each capture routine
execution; the data bit part of the array is zeroed, the
valid bit part is set to ‘1’, i.e. all bits are invalid. The
received data is then searched off-line.

When even higher performance is required, the capture
actions just store the stream of raw captured data into
the raw_data array. Such raw data is then processed
later to produce the [data bit, validity bit] arrays.

Such philosophy gives a quite serial and deterministic
behaviour without need of asynchronous process
communication or priority re-entrant interrupt handlers.

4.2. Source files

• Makefile

• Batches

o gcc.bat – invokes the compilation of both
firmware binary streams

o fuse.bat – initialises the microcontroller
fuses

o progX.bat – uploads the firmware into the
microcontroller (prog5.bat for ISO15693
firmware family, prog4.bat for ISO14443
firmware family)

• Level 1

o level1.h – declares common decoding
variables and functions

o level1_14443.h – declares common
variables and functions related to
ISO14443

o level1_14443.c – defines data capture
functions related to ISO14443

o level1_15693.h – declares common
variables and functions related to
ISO15693

o level1_15693.c – defines data capture
functions related to ISO15693

o main.c – contains main entry point and
microcontroller resources initialisation

• Level 2

o level2.h – declares common uplink
variables, functions and microcontroller port
initialisation

o level2_14443.h – declares common
variables and functions related to
ISO14443 uplink

o level2_14443.c – defines ISO14443 related
uplink routines and response data
extraction

o level2_15693.h – declares common
variables and functions related to
ISO15693 uplink

o level2_15693.c – defines ISO15693 related
uplink routines and response data
extraction

o level2.c – defines EM4294 SPI routine,
CRC functions and EM4006 data extraction
routine

• Level 3

o level3.h – declares common main loop
variables and routine

o level3.c – defines main loop and main
execution functions

o simcard.h – declares common variables
and routines related to SIM card

o simcard.c – defines SIM card related
routines

o boot_ld.c – implements a bootloader
feature

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

4 www.emmicroelectronic.com

• Level 4

o level4.h – declares common variables and
routines for UART handler

o level4.c – defines UART handler code

• Custom level

o custom_level.h – declares custom level
variables and routines

o custom_level.c – defines custom level code

Two separate firmware streams can be created by the
compilation via <make> command in the shell window.

The corresponding value of RF_SUPPORT environment
variable must be set before the compilation;

• Use <set RF_SUPPORT=V15693> command
for compiling the ISO15693 and EM4006 family
161 firmware. The result is main_V15693.hex
file, generated if no error occurs only. ISO14443
related code is excluded from the compilation.

• Use <set RF_SUPPORT=V14443> command
for compiling the ISO14443 family 162 firmware.
The result is main_V14443.hex, generated if no
error occurs only. ISO15693 and EM4006
related code is excluded from the compilation.

Remember to check the compilation output for errors.
Run <prog.bat> to program main.hex firmware into the
microcontroller device.

4.3. Microcontroller Start-up

After power-up, the microcontroller enters in the
bootloader section (see “EMDB410 RFID Reader –
Description of Firmware protocol” document for
bootloader description). The bootloader is bypassed if
entered because of watchdog. Then, main.c/main()
initialises the microcontroller resources including the
microcontroller port settings and directions and passes
the control to level3/main_receiver().

4.4. Level 3

Level 3 defines main_receiver loop body (see Figure 1
Main_receiver loop) and main execution routines.

Main loop periodically calls the
level4/CheckIncomingMessage() routine to check
incoming UART data. If any valid message is parsed
well, the main loop executes appropriate action block
otherwise it invokes an error response generation. In
general, all the executive routines are coded there, see
“EMDB410 RFID Reader – Description of Firmware
protocol” document for each execution command
description. Each action should generate at least one
response in bounded time.

4.5. Custom level

Custom level has been added to make the customer
firmware modification easy.

EMDB410 firmware expects the custom level
defines/declares the following constructs;

• INITIALISE_CUSTOM_PORTS macro that
controls the customer I/O

• customer_init() function that is called once after
the basic microcontroller initialisation is done

• customer_main() function that is called every
time before the check for incoming UART
message is called

• customer_acquire() function that is called before
the standard firmware command is executed so
that it can be delayed, for example due to
custom critical timings

• customer_release() function that is called after
the standard firmware command is executed

• exec_customer_command() function that is
called with custom data when EFh command
has been received

Customer_acquire() and customer_release() functions
are implemented so that the custom level can intercept
the standard firmware command execution that requires
the maximum of performance. Thus custom level can
either delay the standard command execution or disable
all the conflicting custom resources (e.g.; customer
implemented interrupts pending during command
transmission/response capture).

customer_acquire()

UART_COMMAND
empty?

Automatic

Action

(if any &

enabled) −

+

UART_COMMAND
Response

UNKNOWN

_CMD
defined?

+

_

UART_

COMMAND

Execute

customer_release()

MAIN_RECEIVER

RESET?
WATCHDOG

Response

ASIC_ANTENNA

_FAULT

+

−

customer_main()

CHECK
INCOMING
MESSAGE

UART_MESSAGE

 _OK?

+

_Response

Error

Figure 1 Main_receiver loop

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

5 www.emmicroelectronic.com

4.6. Level 4
Level 4 defines UART communication routines.

4.6.1. PC -> Reader communication

Incoming bytes are stored in a circular buffer. Function
CheckIncommingMessage (see Figure 2 Check Incoming
Message) analyses the content of incoming circular
buffer which contains incoming bytes.

This function loop implements a final state machine with
following states: UART_EMPTY - no bytes are pending,
UART_READ_SIZE - analysing incoming message size
from pending bytes, UART_READ_BYTES - analysing
body and ETX of message from pending bytes,
UART_WAIT_ERROR_SENT - error state,
UART_VALID - valid message format is found.

Input Buffer
empty?

+

Input Buffer
empty?

+

Input Buffer
empty?

+

UART_COMMAND = 0
Return
UART_MESSAGE_OK

+

CHECK_INCOMING
_MESSAGE

OVERFLOW?
PARITY error?

−

Read message size

Sufficient
Message

Size?

Valid ETX?

+

−

−

−

−

−

Valid STX?

−

+

Drop byte

Drop BufferDrop Buffer

ParseMessage
Return result from

ParseMessage

Return

NO_ETX

Return
OVERFLOW
ERROR_FLAG

+

Figure 2 Check Incoming Message

Wrong start message symbol (byte STX = 02h) causes
immediate error response. Zero bytes received prior the
valid STX byte are ignored. Thus, if no response occurs
by defined time-out, by means of sending zero bytes to
the reader the internal buffer can be forced to overflow to
detect any possible firmware lock-up.

Valid message is parsed in function
level4/ParseMessage(), refer to

Figure 3 Parse Message (level4.c). Valid message length
is checked and message useful information is copied into
appropriate variables. Specific data is copied into the
dedicated variables, uplink command data is stored into
the cmd_message array (cmd_message_len variable
contains the number of valid bytes in this array).

PARSE_MESSAGE

Compute Checksum

Checksum ok?
Return

BAD_CRC

defined?
Command

Return

Wrong size?
Return

_ERR
INTERBYTE

UNKNOWN
_CMD

Extract data from
message body

UART_COMMAND = Command
Return
UART_MESSAGE_OK

−

−

+

−

+

+

Figure 3 Parse Message (level4.c)

4.6.2. Reader -> PC communication

Response can be sent using one of the response forming
routines (FormatResponseShort, FormatResponseData,
SendCaptureData, SendDebugData, SendRawData, and
FormatResponse_2Blocks) according to the transported
data contents. All these routines are blocking, i.e. they do
not return until the whole response is transmitted.

FormatResponse_Short routine that generates short
response is used when the error occurs during the
command parsing or the execution of the last command.
It contains no data part.

FormatResponse_Data is used to send non-zero data
streams successfully received by the reader.

SendCaptureData sends out current capture buffer
comprising the captured bits and valid bits array. The
size of each array is defined by capture_cnt variable.

SendRawData sends out current raw_data capture
buffer of length defined in raw_cnt variable.

SendDebugData sends out current content of
debug_buffer of length defined in debug_cnt variable.

FormatResponse_2Blocks sends out two arbitrary
arrays.

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

6 www.emmicroelectronic.com

5. ISO15693 communication routines

5.1. Uplink routine (reader to tag)

ISO15693 uplink final state machine is implemented in
level2_15693/SIG _OUTPUT_COMPARE1A interrupt
routine.

ISO15693 1 out of 4 forward link encoding signal can be
generated by toggling the DIN input signal, on the
EM4294, in intervals that are multiple of 9.44us long.
Calculating all the possible interval durations, there are
15 possible values found only. See level2_15693.c file
for the fwd_time array actual values. The values of this
array are measured by the microcontroller clock minus
the interrupt latency. The values were obtained
empirically.

Before the transmission, the command contents are
transformed into the array so that it contains the
sequence of indices into the predefined uplink timings
array fwd_time according to the 1 out of 4 forward link
encoding. This array is computed by
Prepare_timings_15693 routine in level2_15693.c.

Actual data transmission interrupt routine implements a
simple final state machine for reprogramming the timer
T1. Timer T1 is set to CTC mode where the interrupt is
generated by counter T1 compare event. The new value
of DIN pin is toggled in bounded time.

Timings of single modulated pulse is fixed at
fwd_time[1] item (i.e. 9.44us minus the interrupt
latency).

5.2. Capture routines

In current versions, both ASK and FSK decoding routines
are supported. Decode routines are empirical algorithms
that trade off among performance, reliability, and
robustness.

5.2.1. ASK decode routine

The ASK decoding routine implements a small final state
machine that decodes the response Manchester data,
see level1_15693/SIG_INPUT_CAPTURE1 ASK
decoding routine. The routine emits one pair [decoded
bit, decode valid bit for each bit (not necessarily on each
call) decoded. If a decoded bit flow is considered to be
broken (the routine encounters/detects bad DOUT signal
properties), only one pair having demodulation invalid bit
set to 1 can be emitted. Thus, wrong or noisy sequence
can be reduced to 1 pair only since no useful information
is received.

z = TCNT0 pulses

old_capture last_capture now

capt

Time

Figure 4 ASK Capture

During the reception, T1 counter counts the number of
microcontroller clocks between two falling edges on
DOUT output (EM4294 data demodulation output). Each
edge detection causes timer counter value capture event
that invokes T1 capture interrupt.

Counter T0 counts the number of DOUT pulses.
Manchester encoded bit is resolved only if the capt value
is higher than half bit data rate interval, i.e. in now time
(see Figure 4 ASK Capture).

Number of pulses x and capt delay determine the
Manchester data envelope.

Before starting the capture routine execution, the sof
value is zeroed. If the ASK Start of Frame (SOF) is
captured, the sof value is set to 1, if the ASK End of
Frame (EOF) is captured, the sof value is set to 2.

Note: Keep the code latency at minimum as much as
possible (T1 capture interrupt plus T2 overflow interrupt
routines latency has to be strictly less than halfDataRate
variable value) otherwise the decoding routine fails.

5.2.2. FSK capture routine

FSK decode routine is located in
level1_15693/dual_subcarrier_polling function. Analysis
of FSK DOUT signal consumes the full performance of
the microcontroller because of the signal bit frequency.
Since one FSK pulse length is 28 to 32 RF clocks, there
is no time to involve interrupt style capture routine.
Therefore, FSK decode routine is a polling type routine.

The FSK response signal consists of a sequence of pairs
comprising 9 and 8 (or 8 and 9) pulses of the two
different frequencies. Having set the counter T2 to count
the rising edge of the subcarrier DOUT signal, the polling
routine can measure the time duration of fixed sequence
pairs 9, 8; 9, 8, etc. pulses assuming the measurement
error of inverted pair (8 and 9 pulses) can be neglected.
Each pair, i.e. time duration of adjacent 9 and 8 pulses,
is evaluated as one decoded bit as the Manchester
envelope is determined by the comparison of the
measured duration time between 9 pulses and 8 pulses.

Unfortunately, there is no exact way how to detect the
collisions by means of microcontroller resources hence
current decode routine is not able to emit invalid bits.

FSK capture routine does not allow any processing of
SOF (Start of Frame) status.

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

7 www.emmicroelectronic.com

5.3. Data Extraction

The result of capture routines is processed by
level2/ExtractData_15693 function to extract the
response data from the capture array.

The function utilises SearchValidBit_15693 function that
searches for a first valid data bit. In ASK case, the first
valid ‘0’ bit is searched and its next bit position is
returned. In FSK case, the response SOF comprises
9,9,9,8,8,8,9,8 pulses sequence of the constant pattern
with some invalid bits at two possible positions. The
position next to the pattern is returned.

If the valid position is obtained from
SearchValidBit_15693 function, ExtractData_15693
function shifts consequent valid bits into the
data_capture array until the invalid bit is found or end is
reached.

Response length check, CRC check, and other response
proprieties check are left on the upper level routines or
directly on the application software.

6. Watchdog (handling EAS)

Interrupt driven capture routines have one disadvantage
– interrupt priority. For example, in case some tag with
EAS feature enabled is in the RF field, the EAS signal
invokes the capture interrupt continuously. And, if the
capture timeout interrupt has lower priority than the
capture interrupt, the capture phase cannot be stopped.

Therefore, the watchdog is involved to stop the capture
phase in case of EAS. Watchdog reset is handled in
different way unlike the standard reset. The watchdog
generates the watchdog response (0x01 -
ERR_ASIC_ANTENNA_FAULT, see EMDB410
Firmware Protocol Description application note) after
~2.1s.

Application software has to set its communication
timeout to wait at least for the watchdog response.
Receiving the watchdog response, the application
software should restore the EMDB410 Reader state
completely. Anyway, EM4294 configuration word
firmware internal value is not reset by the watchdog and
remains corresponding to the value actually configured to
EM4294 AFE.

7. EM4006 data reception

7.1. Capture Routine

EM4006 capture routine is located in
level1_15693/EM4006_polling function.

EM4006 reception routine is decoding a Miller encoded
response signal from DOUT EM4294 output. Such data
is decoded by a small final state algorithm using DOUT
pulses measured with internal timers. The decoded pair
[data bit, validity] is stored into the capture array.
EM4006 datarate that specifies the threshold period is
defined by the 4006_scale parameter by formula
DataRate = 2 ̂4006_scale.

7.2. Data Extraction

EM4006 data extraction routine is located in
level2/Extract_EM4006 function.

EM4006 data extraction routine searches for a sequence
of 80 valid bits (including the CRC check) according to
the EM4006 telegram within the capture array. Since the
EM4006 telegram is asynchronous to the capture phase,
the telegram can be located at arbitrary position. If any
invalid bit is found, the search is restarted starting from
next valid bit until the end of the array is reached.

8. ISO14443 communication routines

8.1. Uplink routines (reader to tag)

8.1.1. ISO14443 Type A Uplink routine

Type A Uplink code is located in
level2_14443/SIG_OVERFLOW1 routine together with
the Type B Uplink code.

Type A Uplink code is interrupt driven final state machine
that generates Modified Miller encoded pulses on DIN
signal. Each interrupt is raised so that the DIN pulse
falling edge can be generated, the DIN pulse in ‘low’
value duration is hard coded by a loop and then the DIN
is set to ‘high’ value waiting for the next interrupt.

Duration between two interrupts is defined in
fwd_A_timings array.

8.1.2. ISO14443 Type B Uplink routine

Type B Uplink code is located in
level2_14443/SIG_OVERFLOW1 routine together with
the Type A Uplink code.

Type B Uplink code is interrupt driven shifter of the data
bits to DIN signal because of NRZ encoding.

Duration between two interrupts is defined by
fwd_B_timings[0] value, see level3 initialisation code.
SOF and EOF symbols are generated in
level2_14443/SendForward_14443 routine according to
the fwd_B_timings[1] (SOF) and fwd_B_timings[2]
(EOF) data items.

8.2. Capture Routines

8.2.1. ISO14443 Type A Capture routine

Type A capture routine is located in
level1_14443/type_A_polling function.

Manchester 106kbps encoded data requires high
performance capture routine. Therefore, the capture
phase is split into two parts; raw data capture phase and
off-line decoding phase.

The raw data capture is polling type loop that measures
the total duration of the group of subcarrier manchester
modulated pulses and the duration of no modulation of
DOUT signal (same principle as in ISO15693 ASK
capture routine). In the worst case, there is no time to
perform the data decoding, thus this phase only stores

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

8 www.emmicroelectronic.com

the measured values into the raw_data array, nothing
else.

The off-line decoding phase searches the Manchester
envelope in the raw_data array, and decodes it into the
capture array.

8.2.2. ISO14443 Type B Capture routine

Type B capture routine is located in
level1_14443/type_B_polling function.

BPSK decoded data is already received on
DOUT/DOUT1 signals from EM4294 AFE. Type B
capture routine just samples the DOUT signal on each
DOUT1 rising edge and stores them into the capture
buffer. The validity bits are always set to ‘0’.

8.3. Data Extraction

8.3.1. ISO14443 Type A Data extraction

Type A data extraction routine is located in
level2_14443/ExtractTypeAData function.

At first, Type A Data Extraction function calls
SearchValidBit_14443 function to search for a first valid
bit within the first 7 bits of capture array. If the valid bit
position is found, the SOF bit is checked.

Then, the response data bytes are shifted out into the
data_buffer array starting from the next position. Every
data byte parity is compared to every 9

th
 bit. The data

extraction loop is terminated when any invalid bit is
encountered or the parity check fails or the end of the
buffer is reached.

Response length check, CRC check, and other response
proprieties check are left on the upper level routines or
directly on the application software.

8.3.2. ISO14443 Type B Data extraction

Type B Data Extraction routine is located in
level2_14443/ExtractTypeBData function (short version
used by 65h, 6Ch, and 6Dh command) and
level2_14443/ExtractTypeBDataL functions (long version
used by 63h command).

Response length check, CRC check, and other response
proprieties check are left on the upper level routines or
directly on the application software.

Short version

At first, Type B Data Extraction function calls
SearchValidBit_14443 function to search for a first valid
bit within the first 7 bits of capture array. If the valid bit
position is found, the SOF sequence is checked.

Then, the response data bytes are shifted out into the
data_buffer array starting from the next position. Each
byte starts with ‘0’ start bit. The stop bit ‘1’ is merged with
consequent EGT ‘1’ bits and is checked together. The
data extraction loop is terminated when any invalid bit is
encountered or the stop bit is missing or the end of the
buffer is reached.

The EOF check is omitted.

Long version

At first, Type B Data Extraction function calls
SearchValidBit_14443 function to search for a first valid
bit within the first 7 bits of capture array. If the valid bit
position is found, the data extraction is started.

At the beginning of the data extraction, the first 10 data
bits are extracted assuming it is the SOF. If non-zero bit
is found within these 10 bits, the bits are treated as
normal data bits and SOF is assumed missing.

Then, the response data bytes are shifted out into the
data_buffer array starting from the next position. Each
byte starts with ‘0’ start bit. The stop bit ‘1’ is merged with
consequent EGT ‘1’ bits and is checked together. The
data extraction loop is terminated when any invalid bit is
encountered or the stop bit is missing or the end of the
buffer is reached.

The EOF check is accepted to terminate the data
extraction.

9. EM4294 Crypto engine communication

Dedicated crypto engine implements the encryption
algorithms. Currently, the EM4294 reader chip
implements the EM4035 crypto algorithm (for the
communication with EM4035 tags in secure mode) and
standard 3 DES ciphering algorithm.

The EM4294 crypto communication routines implement a
minimal set of operations defined in ISO 7816-3
document;

• Warm reset

• PPS command

• T=0 protocol – single block write and single
block read transaction

• Clock stop

Crypto engine clock signal (SIM_CLK) is generated by
the counter T0 in PWM mode, the 2MHz square signal.
As the counter T0 is utilised also for data capture, the T0
SIM_CLK output has to be disabled for the necessary
period (i.e. Clock stop). Therefore, block write and block
read operations automatically restart the counter T0 in
appropriate mode before the next SIM card operation is
processed.

9.1. Warm reset

Crypto Engine warm reset is located in the
simcard/SIM_Detect function.

SIM Card reset signal (SIM_RST) is asserted for ~450
SIM card clock cycles (SIM_CLK signal) during the warm
reset operation. Then, 5 bytes of the Answer To Reset
(ATR) response are expected to arrive on SIM_IO signal,
the 1

st
 byte (0x3B) has to be received within ~4700

SIM_CLK cycles.

If the ATR is received successfully, the SIM_CLK clock is
left running and sim_detected variable is set. Otherwise
the SIM_CLK is stopped and sim_detected variable is
reset.

AN431

Copyright  2007, EM Microelectronic-Marin SA
04/07 – Rev.A

9 www.emmicroelectronic.com

The SIM card type and version detection is left on the
application software.

9.2. PPS command

Crypto Engine PPS command implementation is located
in the simcard/ SIM_RSTPPS function. The goal of this
function is to increase the communication speed from the
default 372 SIM clocks per 1 ETU to the 32 SIM clocks
per 1 ETU.
At first, Warm reset is invoked. If the SIM card is
detected successfully and the SIM card ATR reports
TA(1) = 0x95, the PPS command (0xFF, 0x10, 0x95,
0x7A) is sent to the SIM card. If correct PPS response is
returned, the firmware timings constants are altered to 32
SIM clocks per 1 ETU until the next Warm reset is
executed.

9.3. Single block write and block read

Single block write and single block read code is located
in simcard/SIM_Command function.

The command sequence comprises;

• If the sim_detected variable is reset, quit the
processing

• If the SIM_CLK is stopped, resume it

• Send the command header (5 bytes)

• Receive the ACK byte

• If incorrect or none ACK is received, quit the
processing

• Send or receive data bytes, if any

• Receive the status bytes

Response length check, status bytes check, and other
response proprieties check is left on the upper level
routines or directly on the application software.

10. Debug functions

EMDB410 firmware contains lot of debugging code.
Although the debugging code should be removed in the
final release, the debugging code allows easier portion to
other microcontrollers. Hence, the debugging code will
be deleted only if insufficient code memory occurs.

Within most of the data capture routines, the debugging
code parts can be found. Usually, the debugging code is
located in the branch executed conditionally depending
on the debug_mode variable. The purpose of the
debugging code is the only one; to get the captured data
of whatever form (i.e. raw envelope pulses array,
decoded data in capture array, etc.) into the host PC so
that the data can be checked and processed by the
application software functions. Such feature allows the
development/debugging/tuning of firmware routines in
the PC instead of in the microcontroller simulator.

Warning: Any debugging code functionality is not
assured.

11. Resource utilisation

Historically, the firmware source was developed for
ATMega8 microcontroller, however, its code memory
size allowed only one set of communication routines to
be implemented, i.e. either ISO15693 or ISO14443.

EMDB408 ATMega64 microcontroller was chosen
because of program memory capacity and additional
timer T3 available. After the firmware compilation, the
resulting firmware code length is about 21k Bytes and
the performance is still sufficient.

It can be said that since the routines requiring high
performance are the polling type, the interrupts may be
shared for the routines requiring low performance.
Currently, the timer T3 is not used by the EM4094 RFID
Reader (part number: EMDB408) firmware, thus the
complete firmware can be further optimised for
ATMega32 or similar.

EMDB410 ATMega16 microcontroller is enough for
single protocol communication (either
ISO15693+EM4006 or ISO14443). ISO15693+EM4006
firmware code length is about 12kB, ISO14443 firmware
code length is about 10kB.

However, ATMega16 microcontroller code memory
capacity appears not sufficient for creating stand-alone
readers (e.g.; door access systems) because the
sophisticated high level “application” functions. Also, the
SRAM capacity (1kB) becomes insufficient in the
applications where the microcontroller large data
structure internal operations are expected.

Therefore, it can be stated that the ATMega32
microcontroller is the optimal microcontroller with
balanced code/SRAM/features parameters for the usage
with EM4294 reader chip.

EM Microelectronic-Marin SA cannot assume responsibility for
use of any circuitry described other than circuitry entirely
embodied in an EM Microelectronic-Marin SA product. EM
Microelectronic-Marin SA reserves the right to change the
circuitry and specifications without notice at any time. You are
strongly urged to ensure that the information given has not been
superseded by a more up-to-date version.

© EM Microelectronic-Marin SA, 04/07, version A

