
 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 1 www.emmicroelectronic.com 
 

 
 Application Note 30 
 

Title: Frequently Used Software Routines 
for EM 4-bit Microcontrollers 

 
 
 
Product Family: 4-bit Microcontroller 
 
Part Number: EM66xx, EM65xx 
 
Keywords: 4 bits microcontroller, rotate left, carry flag, register, rotate right, index register, increment, decrement, 

buffer, subroutine levels, ADD, SUB, Shift, data tables, ROM, RAM, lookup algorithm, linear lookup, 
binary lookup, speed, trigonometric functions, jump tables, indirect jumps, N-way branching, 
immediate ALU instructions, accumulator, instruction timing, jump instructions, recursive calculation, 
data tables, 8-bit data, 16 bit binary division, 16 bit binary multiplication,  

 
Date: June, 2005 REV. C 
 

Table of Content: 
1. Instruction Timing.................................................................................................... 2 

2. Compilation when using Macro............................................................................... 3 

3. How to rotate left a register through carry............................................................... 4 

4. How to rotate right a register through carry............................................................. 6 

5. How to increment or decrement the index register.................................................. 8 

6. How to rotate left a large buffer in RAM .................................................................. 9 

7. How ADD, SUB and shift instructions handle the carry flag.................................. 11 

8. Creating Data Tables in ROM............................................................................... 12 

9. How to implement N-way branching ..................................................................... 19 

10. Immediate ALU instructions .................................................................................. 23 

11. How to increment the accumulator........................................................................ 25 

12. Recursive Calculation with Lookup Tables ........................................................... 26 

13. 16 bit binary division with 4 bit controller............................................................... 30 

14. 16 bit binary multiplication with 4 bit controller ...................................................... 34 

15. How is the prescaler after reset ............................................................................ 38 

16. How to convert Hex - Dec ..................................................................................... 39 

17. How to convert Dec - Hex ..................................................................................... 41 

18. Protection of internal E2PROM.............................................................................. 43 
 

EM MICROELECTRONIC - MARIN SA 
 

 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 2 www.emmicroelectronic.com 
 

Application Note 10 

1. Instruction Timing 
 
 
The 4 bits microcontroller operates at an oscillator frequency, equivalent to a clock period with a duty cycle of 50%. An 
instruction cycle of the 4 bits uC takes two clock periods. Each instruction cycle is split into 4 phases as shown in the 
following diagram. 
 
   ----+ +-----+ +-----+ +--- 
CLK   P4 | P1 | P2 | P3 | P4 | P1 | 
  +-----+ +-----+ +-----+ 
  +-----+   +-----+ 
∅1  | |   | | 
   ----+ +-----------------+ +--- 
   +-----+   +--- 
∅2   | |   | 
   ----------+ +-----------------+ 
    +-----+ 
∅3    | | 
   ----------------+ +--------------- 
   ----+   +-----+ 
∅4  |   | | 
    +-----------------+ +--------- 
 
  |<--------->| Clock Period   
  |<--------------------->| Instruction Cycle  
 
 
During the 4 phases the microcontroller performs the following functions: 
 
Phase 1: the instruction register is initialised. 
 
Phase 2: the instruction is fetched from ROM (or forced to an interrupt subroutine call when an interrupt request has 

been acknowledged) and is decoded at the end of  phase 2 
 
Phase 3:  ALU operations are executed,  the stack pointer is managed and data are read from RAM. 
 
Phase 4:  data are written to RAM and the program counter is incremented or modified. 
 
 
 
Remarks: 
 
As can be seen, the 4 bits microcontroller executes all the instructions of the instruction set (including Jump instructions) 
within in one instruction cycle, which is equal to two clock cycles.  
 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 3 www.emmicroelectronic.com 
 

Application Note 24 
2. Compilation when using Macro 
 
Look at the three examples below. 
The first and second examples are assembled correctly, but not the third one. The jpnz START is assembled 
to the code 7FFF, which is wrong.  
The label (i.e. START) needs to be defined before it is used in a macro call (i.e. brset RegSysCntl2, 0100b, START). 
 
1st example without macro: THAT WORKS ! 
; ======================================== 
;  MAIN PROGRAM 
; ======================================== 
MAIN:  call INIT 

  sti … 

  ldi  0100b 
  and  RegSysCntl2 
  jpnz START 

  call SUB 

START:  sti … 

 
2nd example with macro:  THAT WORKS ! 
; ======================================== 
;  MAIN PROGRAM 
; ======================================== 
MAIN:  call INIT 

START:  sti … 

  brset  RegSysCntl2, 0100b, START 

  call SUB 

  sti … 

 
3rd example with macro:  THAT DOESN'T 

WORK ! 
; ======================================== 
;  MAIN PROGRAM 
; ======================================== 
MAIN:  call INIT 

  sti … 

  brset  RegSysCntl2, 0100b, START 

  call SUB 

START:  sti … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1st   
         Ok! 
2nd   
 
 

Macro of the examples 2 - 3: 
;------------------------------------------------------------------ 
; MACRO - BITCHECK 
;------------------------------------------------------------------ 

brset  .macro ADDR, DATA, LABEL 

   ldi  DATA 
   and ADDR 
   jpnz LABEL 

.macend 
 
 
 
1st   
        Wrong! 
2nd 
 
 
 
 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 4 www.emmicroelectronic.com 
 

 
Application Note 1 
3. How to rotate left a register through carry 
 
The 4 bits uC does not provide a Rotate Left instruction. Therefore it is necessary to implement the Rotate Left function by a 
small piece of code, which could be written as a subroutine as shown below, but could be also inserted as an inline code 
block in the main program.  
 
The following figure gives a graphical representation of the Rotate Left operation: 
 
   +-------------------------------+ 
   | +---+   +---------------+   | 
   +<--| C |<--| Register or A |<--+ 
  +---+   +---------------+ 
     Bit3   Bit0 
 
ROLX -  Rotate Left Indexed 
The following code rotates left a RAM register pointed to by the index register. It is written as a subroutine: 
 
 ROLX:  JPC ROLX1 ;if Carry is already set, branch to code that 
     ;rotates Carry into Bit0 
   SHLX  ;get data and shift left, Bit3 -> C, 0 -> Bit0  
   STAX  ;store data 
   RET  ;return  
 ROLX1:  SHLX  ;get data and shift left, Bit3 -> C, 0 -> Bit0 
   JPC ROLX2 ;as Carry may be reset by the following 
     ;instructions the condition C = 1 must be 
     ;handled separately. 
   STAX  ;store data 
   INCX  ;as Carry was set initially, Bit0 must be set 
     ;now (1 -> Bit0). Because Bit0 is 0, INCA sets 
     ;Bit0 without affecting the other bits. 
     ;Carry is reset (0 -> C) ! 
   STAX  ;store data 
   RET  ;return 
 ROLX2:  STAX  ;store data 

INCX  ;1 -> Bit0, 0 -> C 
   STAX  ;store data 
   SHRA  ;restore Carry. 
     ;Bit0 -> C here is equivalent to 1 -> C 
   RET  ;return 
 
 
ROLR (Reg) -  Rotate Left Register 
The following code rotates left a RAM register named  Reg  directly. It is written as a code block that can be included in the 
main program: 
 
 ROLR:  JPC ROLR1 ;if Carry is already set, branch to code that 
     ;rotates Carry into Bit0 
   SHL Reg ;get data and shift left, Bit3 -> C, 0 -> Bit0  
   STA Reg ;store data 
   JMP ROLR3 ;exit 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 5 www.emmicroelectronic.com 
 

 ROLR1:  SHL Reg ;get data and shift left, Bit3 -> C, 0 -> Bit0 
   JPC ROLR2 ;as Carry may be reset by the following 
     ;instructions the condition C = 1 must be 
     ;handled separately. 
   STA Reg ;store data 
   INC Reg ;as Carry was set initially, Bit0 must be set 
     ;now (1 -> Bit0). Because Bit0 is 0, INCA sets 
     ;Bit0 without affecting the other bits. 
     ;Carry is reset (0 -> C) ! 
   STA Reg ;store data 
   JMP ROLR3 ;exit 
 ROLR2:  STA Reg ;store data 

INC Reg ;1 -> Bit0, 0 -> C 
   STA Reg ;store data 
   SHRA  ;restore Carry. 
     ;Bit0 -> C here is equivalent to 1 -> C 
 ROLR3:    ;exit 
  
 
ROLA -  Rotate Left Accumulator 
The following code rotates left the accumulator. It is written as a subroutine. Note that a temporary register 
named  Temp  is used to save and restore the accumulator. 
 
 ROLA:  JPC ROLA1 ;if Carry is already set, branch to code that 
     ;rotates Carry into Bit0 
   STA Temp ;store accu 
   SHL Temp ;shift left, Bit3 -> C, 0 -> Bit0  
   RET  ;return  
 ROLA1:  STA Temp ;store accu 

SHL Temp ;shift left, Bit3 -> C, 0 -> Bit0 
   JPC ROLA2 ;as Carry may be reset by the following 
     ;instructions the condition C = 1 must be 
     ;handled separately. 
   STA Temp ;store accu 
   INC Temp ;as Carry was set initially, Bit0 must be set 
     ;now (1 -> Bit0). Because Bit0 is 0, INCA sets 
     ;Bit0 without affecting the other bits. 
     ;Carry is reset (0 -> C) ! 
   RET  ;return 
 ROLA2:  STA Temp ;store accu 

INC Temp ;1 -> Bit0, 0 -> C 
   STA Temp  ;save A 
   SHRA    ;restore Carry. 
     ;Bit0 -> C here is equivalent to 1 -> C 
   LDR Temp ;restore A 
   RET  ;return 
 
IMPORTANT: 
Note that the Carry flag may be reset by some instructions. If you want to preserve the value of the Carry flag you have 
several options: 

1. You may use a register as a temporary flag variable which you set according to the value of the Carry flag and 
which you can interrogate later. 

2. Depending on the value of the Carry flag you may branch to different parts of your program using the  JPC  or  
JPNC  instruction. In each part you may later restore the value of the Carry flag, for example by setting or clearing 
Bit0 of the accumulator and then executing a  SHRA instruction. The code examples in this application note 
demonstrate this method. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 6 www.emmicroelectronic.com 
 

Application Note 2 
4. How to rotate right a register through carry 
 
The EM66xx does not provide a Rotate Right instruction. Therefore it is necessary to implement the Rotate Right function 
by a small piece of code, which could be written as a subroutine as shown below, but 
could be also inserted as an inline code block in the main program. 
The following figure gives a graphical representation of the Rotate Right operation: 
 
           +-------------------------------+ 
           |   +---------------+   +---+   | 
           +->-| Accumulator   |->-| C |->-+ 
          +---------------+   +---+ 
     Bit3   Bit0 
 
 
RORX -  Rotate Right Indexed 
The following code rotates right a RAM register pointed to by the index register. It is written as a subroutine: 
 
 RORX:  JPC RORX1 ;if Carry is already set, branch to code that 
     ;rotates Carry into Bit0 
   LDRXS  ;get data and shift right, Bit0 -> C, 0 -> Bit3  
   STAX  ;store data 
   RET  ;return  
 RORX1:  LDRXS  ;get data and shift right, Bit0 -> C, 0 -> Bit3 
   JPC RORX2 ;as Carry may be reset by the following 
     ;instructions the condition C = 1 must be 
     ;handled separately. 
   STAX  ;store data 
   LDI 08H ;Select the bit to set. 
   ADDX  ;as Carry was set initially, Bit0 must be set 
     ;now (1 -> Bit3). Because Bit3 is 0, ADDX sets 
     ;Bit3 without affecting the other bits. 
     ;Carry is reset (0 -> C) ! 
   STAX  ;store data 
   RET  ;return 
 RORX2:  STAX  ;store data 
   LDI 08H ;Select the bit to set. 

ADDX  ;1 -> Bit3, 0 -> C 
   STAX  ;store data 
   SHLX   ;restore Carry. 
     ;Bit3 -> C here is equivalent to 1 -> C 
   RET  ;return 
 
 
RORR (Reg) -  Rotate Right Register 
The following code rotates right a RAM register named  Reg  directly. It is written as a code block that can be included in the 
main program: 
 
 RORR:  JPC RORR1 ;if Carry is already set, branch to code that 
     ;rotates Carry into Bit0 
   SHRR Reg ;get data and shift right, Bit0 -> C, 0 -> Bit3  
   STA Reg ;store data 
   JMP RORR3 ;exit 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 7 www.emmicroelectronic.com 
 

 RORR1:  SHRR Reg ;get data and shift right, Bit0 -> C, 0 -> Bit3 
   JPC RORR2 ;as Carry may be reset by the following 
     ;instructions the condition C = 1 must be 
     ;handled separately. 
   STA Reg ;store data 
   LDI 08H ;Select the bit to set. 
   ADD Reg ;as Carry was set initially, Bit3 must be set 
     ;now (1 -> Bit3). Because Bit3 is 0, ADD sets 
     ;Bit3 without affecting the other bits. 
     ;Carry is reset (0 -> C) ! 
   STA Reg ;store data 
   JMP RORR3 ;exit 
 RORR2:  STA Reg ;store data 
   LDI 08H ;Select the bit to set. 

ADD Reg ;1 -> Bit3, 0 -> C 
   STA Reg ;store data 
   SHL Reg ;restore Carry. 
     ;Bit3 -> C here is equivalent to 1 -> C 
 RORR3:    ;exit 

 
RORA -  Rotate Right Accumulator 
The following code rotates right the accumulator. It is written as a subroutine. Note that a temporary register named  Temp  
is used to save and restore the accumulator. 
 
 RORA:  JPC RORA1 ;if Carry is already set, branch to code that 
     ;rotates Carry into Bit0 
   SHRA  ;shift right, Bit0 -> C, 0 -> Bit3  
   RET  ;return  
 RORA1:  SHRA   ;shift right, Bit0 -> C, 0 -> Bit3 
   JPC RORA2 ;as Carry may be reset by the following 
     ;instructions the condition C = 1 must be 
     ;handled separately. 
   STA Temp ;store accu 
   LDI 08H ;Select the bit to set. 
   ADD Temp ;as Carry was set initially, Bit3 must be set 
     ;now (1 -> Bit3). Because Bit3 is 0, ADD sets 
     ;Bit3 without affecting the other bits. 
     ;Carry is reset (0 -> C) ! 
   RET  ;return 
 RORA2:  STA Temp ;store accu 

LDI 08H ;Select the bit to set. 
ADD Temp ;1 -> Bit3, 0 -> C 

   STA Temp  ;save A 
   SHL Temp  ;restore Carry. 
     ;Bit3 -> C here is equivalent to 1 -> C 
   LDR Temp  ;restore A 
   RET  ;return 
 
IMPORTANT: 
Note that the Carry flag may be reset by some instructions. If you want to preserve the value of the Carry flag  you have 
several options: 

1. You may use a register as a temporary flag variable which you set according to the value of the Carry flag and 
which you can interrogate later. 

2. Depending on the value of the Carry flag you may branch to different parts of your program using the  JPC  or  
JPNC  instruction. In each part you may later restore the value of the Carry flag, for example by setting or 
clearing Bit3 of the accumulator and then executing a SHL instruction. The code examples in this application 
note demonstrate this method. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 8 www.emmicroelectronic.com 
 

Application Note 3 

5. How to increment or decrement the index register 
 
 
The 4 bits uC does not provide instructions to increment or decrement the index register. Therefore it is necessary to 
implement the Increment and Decrement Index Register functions by a small piece of code, which could be written as a 
subroutine as shown below. 
 
Note that only bits 0 through 2 of the high nibble of the index register (XH) are valid. Bit 3 is ignored when writing to  XH  and 
is 0 when reading  XH. Thus incrementing  XH  never sets the Carry flag. 
 
 
INX -  Increment Index Register 
 
The following code increments the index register by 1. It is written as a subroutine: 
 
 INX:  INC XL ;increment low nibble 
   STA XL 
   JPNC INX1 ;no carry 
   INC XH ;if C = 1 then increment high nibble 
   STA XH 
 INX1:  RET 
 
Note that instead of the  JPNC INX1 instruction also the JPNZ INX1 instruction could be used. When XL  is incremented 
beyond 0FH, it becomes 0 and the Zero flag is set as well as the Carry flag. 
 
 
DEX -  Decrement Index Register 
 
The following code decrements the index register by 1. It is written as a subroutine: 
 
 DEX:  DEC XL ;decrement low nibble 
   STA XL 
   JPC DEX1 ;carry 
   DEC XH ;if C = 0 then decrement high nibble 
   STA XH 
 DEX1:  RET 
 
When XL  is decrement below 0, it becomes 0FH and the Carry flag is cleared. 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 9 www.emmicroelectronic.com 
 

Application Note 4 

6. How to rotate left a large buffer in RAM 
 
The following figure gives a graphical representation of the Rotate left a large buffer in RAM through carry operation: 
 
   +-------------------------------------------------------+ 
   | +---+   +-------+           +-------+   +-------+   | 
   +<--| C |<--| Reg_n |<-- - - <--| Reg_2 |<--| Reg_1 |<--+ 
  +---+   +-------+           +-------+   +-------+ 
     Bit3         Bit0             Bit3            Bit0        Bit3 Bit0 
 
This operation can be performed by using some building blocks described in other application notes. For a detailed 
description of the subroutines called from the code sample given below see the following application notes: 
 
  ROLX - Rotate Left Indexed  AppNote # 1:   How to rotate left a register through carry 
  INX - Increment Index Register AppNote # 3:   How to increment or decrement the index register  
 
The 4 bits uC does not provide  ROLX  and  INX  instructions which are needed here. However, each of these instructions 
can be emulated by a small subroutine. The  INX  subroutine call destroys the current value of the Carry flag. The  ROLX  
subroutine also modifies the Carry flag, but its value has to be saved in a temporary register named  Carry  to be used 
again during the next call of  ROLX. 
 
The following sample is the skeleton of a program using the Rotate left a large buffer in RAM through carry function. It is 
limited to a maximum buffer length of 64 bits (equal to 16 nibbles) because only one 4-bit loop counter register (LoopCnt) 
is used. 
 
 ;Sample Source Code 
 ; for Rotate left a large buffer in RAM through carry function 
 ;------------------------------------------------------------------ 
 ;use IO and register definitions in common header file: 
   INCLUDE IoDef.asm 
 
 ;CONSTANTS  
  BufLen: EQU 16 ;buffer length, 16 nibbles = 64 bits 
 
 ;VARIABLES 
  Carry: EQU 0  ;temporary register to save carry flag 
  LoopCnt: EQU 1  ;loop counter for buffer position 
  BufBegL: EQU 2  ;buffer begin address, low nibble 
  BufBegH: EQU 3  ;buffer begin address, high nibble 
 
 ;PROGRAM 
   ORG 0 
 RESET: JMP Main  ;jump to main program after reset 
 INTERRUPT: JMP Handler  ;jump to interrupt handler 
 Main:  ; ...  ;other application code 
 
 ROLBuf: ;BEGIN Rotate Left Buffer Program Segment 
   STI XL, BufBegL   ;initialise buffer pointer 
   STI XH, BufBegH 
   STI LoopCnt, BufLen  ;initialise loop counter 

STI Carry, 00H  ; reset carry to 00H 
 
 ROLBuf0:     ;DO 
   CALL ROLX   ; rotate left RAM location 
       ;   (C -> B0, B3 -> C) 
   JPNC ROLBuf1   ; test the carry C 
   STI Carry, 01H  ; Set Carry to 01H 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 10 www.emmicroelectronic.com 
 

 ROLBuf1:   
   CALL INX   ; increment index value 
   DEC LoopCnt   ; decrement loop counter 
   STA LoopCnt   ; save loop counter 
   JPNC ROLBuf2   ; IF LoopCnt < 0 THEN EXIT DO 

SHRR Carry   ; restore carry (B0 -> C) 
   STI Carry, 00H  ; reset carry to 00H 
   JMP ROLBuf0   ; LOOP 
 ROLBuf2: SHRR Carry   ; restore carry (B0 -> C) 

;END Rotate Left Buffer Program Segment 
 
   ; ...     ;other application code 
   HALT 
 ;use ROLX module from program library: 
   INCLUDE ROLX.asm 
 ;use INX module from program library: 
   INCLUDE INX.asm 
 Handler: ; ...    ;space reserved for interrupt handler 
   RTI 
   END    ;end of source code 
 
 
IMPORTANT: 
 
Only 2 subroutine call levels : 
 
Note that the 4 bits uC permits only 2 subroutine call levels. In most cases one level will be reserved for the interrupt 
handler, typically serving the timer interrupt to reset the watchdog timer periodically. The code example given in this 
application note is based on this model. 
 
If you want to use a second subroutine call level you have to disable the interrupt before issuing the level-2 call. You have to 
make sure that the watchdog timer does not expire, usually by re-enabling the interrupt after returning from the level-2 
subroutine. 
 
 
Carry flag may be reset by some instructions : 
 
Note that the Carry flag may be reset by some instructions. If you want to preserve the value of the Carry flag  you have 
several options: 
 

1. You may use a register as a temporary flag variable which you set according to the value of the Carry flag and 
which you can interrogate later. The code example in this application note demonstrates this method. 

 
2. Depending on the value of the Carry flag you may branch to different parts of your program using the  JPC  or  

JPNC  instruction. In each part you may later restore the value of the Carry flag, for example by setting or clearing 
Bit0 of the accumulator and then executing a  SHRA instruction. 

 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 11 www.emmicroelectronic.com 
 

Application Note 5 
7. How ADD, SUB and shift instructions handle the carry flag 
 
The  ADD  and the  SUB  operations are executed without using any previous contents of the Carry flag. However, the Carry 
flag is set by these operations. 
 
If the Rotate Right through carry instruction modifier is applied to the ADD  and  SUB  instructions (by appending  S to the 
basic mnemonics) the basic instructions are followed by an implied  SHRA  operation, which modifies the Carry flag 
accordingly. 
 
Add  Operations:  ADD Reg - Add Register without carry 

ADDX  - Add Indexed without carry 
S   - Rotate Right through carry instruction modifier 

 
For  ADD  the Carry flag is set when the result of the operation is larger than 0FH. Otherwise the Carry flag is cleared. 
Formally the  ADD  operation may be described by the following algorithm: 

    A = Reg + A 
    IF A > 15 THEN C = 1 ELSE C = 0 
    A = A AND 15 
    IF A = 0 THEN Z = 0 ELSE Z = 1 
 
Subtract Operations:  SUB Reg - Subtract Register without carry 

SUBX  - Subtract Indexed without carry 
S   - Rotate Right through carry instruction modifier 

 
For  SUB  the Carry flag is cleared when the result of the operation is less than 0FH. Otherwise the Carry flag is set. 
Formally the  SUB  operation may be described by the following algorithm: 

    A = Reg - A 
    IF A < 0 THEN C = 0 ELSE C = 1 
    A = A AND 15 
    IF A = 0 THEN Z = 0 ELSE Z = 1 
 
Shift Right Operations:  SHRA   - Shift Right Accumulator through carry 

SHRR Reg - Shift Right Register through carry 
LDRXS   - Shift Right Indexed through carry 
S   - Shift Right through carry instruction modifier 

 
The Shift Right operations load data from a register in the accumulator and then shift all bits one bit position to the right. 
This implies that Bit0 is moved into the Carry flag (Bit0 -> C) and that Bit3 is set to 0 (0 -> Bit3). 
 
The following figure gives a graphical representation  +---+   +---------------+   +---+ 
of the Shift Right operation:    | 0 |->-| Accumulator   |->-| C | 

+---+   +---------------+   +---+ 
    Bit3               Bit0 

 
Shift Left Operations:  SHL Reg - Shift Left Register 

SHLX  - Shift Left Indexed 
 
The Shift Left operations load data from a register in the accumulator and then shift all bits one bit position to the left. This 
implies that Bit3 is moved into the Carry flag (Bit3 -> C) and that Bit0 is set to 0 (0 -> Bit0). 
 
The following figure gives a graphical representation  +---+   +---------------+   +---+ 
of the Shift Left operation:     | C |-<-| Accumulator   |-<-| 0 | 

+---+   +---------------+   +---+ 
    Bit3               Bit0 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 12 www.emmicroelectronic.com 
 

Application Note 6 

8. Creating Data Tables in ROM 
 
The 4 bits uC has separate memories for instructions (ROM) and data (RAM). Each of these memories has its own address 
space, which may be accessed by two subsets of the instruction set, one for each address space. The instructions 
referencing ROM addresses typically change the flow of control in a program, such as JMP, CALL, RET instructions etc. 
The instructions referencing RAM addresses are typically data transfer and data manipulation instructions. As in any 
program some constant or initial data values are required which have to be stored in ROM to remain persistent when the 
power supply is turned off. Therefore some instructions are required to transfer data from ROM to RAM or to the 
accumulator. For this purpose the 4 bits uC provides the so-called immediate instructions which are listed below: 
 
 STI  Reg, Dat ;R(Reg) = Dat 
 STIX  Dat  ;R(Idx) = Dat 
 LDI Dat  ;A = Dat 
 
Sometimes one would like to transfer not only a single data item, but a table of consecutive data items. 
Also, sometimes one wants to lookup a data item from a table by referencing it by its position relative to the begin of the 
table (the so-called table offset or table index). Some microprocessors provide special instructions to accomplish this. 
Usually these instructions require at least two instruction cycles: one cycle to fetch the instruction itself from ROM, and the 
second cycle to transfer the ROM data to the accumulator. More cycles and more instruction words are required for 
complex instructions with table index and destination register operands. Such complex instructions are typical for CISC 
processors. 
As a RISC processor, the 4 bits uC follows a different approach by deliberately restricting the instruction set for the benefits 
of reduced chip area and speed, and emulating complex instructions in software. 
The following gives several examples of how to create tables and how to work with them. In this application note we are 
dealing with two classes of ROM tables: 
 
 - small tables that may be transferred into RAM 
 - tables too large to fit into available RAM 
 
 
A.  Small Tables 
 
The most efficient way to work with a small table is to initialise it in RAM and then work with it using the RAM instructions. 
 
Let us assume that we want to create a lookup table for trigonometric functions, for example the sine function between 0 
and 90 degrees in steps of  10 degrees. This requires a table with 10 entries. 
Let us further assume that is sufficient for the accuracy of our application to represent the maximum value sin(90) = 1 as 
0FH (15 decimal). Then we need to build the following table: 
   _____________________________ 
     x sin(x) 15*sin(x) 
       rounded 
   ----------------------------- 
     0 0              0 
    10 0.1736482      3 
    20  0.3420202      5 
    30 0.5            7 
    40 0.6427876     10 
    50 0.7660444     11 
    60 0.8660254     13 
    70 0.9396926     14 
    80 0.9848077     15 
    90 1             15 
   _____________________________ 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 13 www.emmicroelectronic.com 
 

The following small program section in ROM creates the table in RAM: 
 
  SineTab   EQU 0 
 
  CreateSineTab: STI SineTab, 0 
   STI SineTab + 1, 3 
   STI SineTab + 2, 5 
   STI SineTab + 3, 7 
   STI SineTab + 4, 10 
   STI SineTab + 5, 11 
   STI SineTab + 6, 13 
   STI SineTab + 7, 14 
   STI SineTab + 8, 15  
   STI SineTab + 9, 15 
 
Of course we also could have used the STIX Dat and INC Reg instructions to build the table. But that would take more 
than twice the number of instructions compared to the example given above. 
We now may use this table and look up values from it. The next program example assumes that the table index is passed in 
the accumulator and that we can use the index register to lookup the corresponding value from the table. It also assumes 
that the start of the table in RAM is at an arbitrary address defined by the symbol SineTab. 
 
  SineTabL   EQU 0 
  SineTabH   EQU 0 
 
  Lookup:  STA  XL   ;save table index 
   STI XH, SineTabH  ;set high nibble of index register  
       ;to high nibble of table base address 
   LDI SineTabL  ;get low nibble of table base address 
   ADD XL   ;add table index  
   STA XL   ;save result in index register  
   JPNC Lookup2 
   INC XH   ;if Carry then increment high nibble 
   STA XH   ;save result in index register  
  Lookup2:  LDRX    ;get value from table  
 
This program returns the value looked up from the table in the accumulator. 
 
 
B.  Large Tables 
 
Sometimes there may not be sufficient RAM to use the algorithm discussed before. Fortunately, the 4 bits uC provides 
enough ROM to use one of the following algorithms, which are not as elegant as the RAM approach, but provide the 
functionality of table lookup in ROM. 
 
We will again use the table from the previous example. This is not really a large table, but using the same table will give you 
a better opportunity to compare the various algorithms.  
 
For better understanding we will first describe each ROM table lookup algorithm in terms of a high level pseudo language 
(HLL). Then we will show its compiled version in 4 bits uC assembler language. 
 
 
1)  Linear Lookup Algorithm 
 
HLL Algorithm 
This program looks up a value Y as a function of an index X. It uses a decision structure (SELECT CASE structure) which is 
common to many HLL languages. This is a simple linear lookup algorithm which is easy to program. Its functionality is 
equivalent to that of a table lookup. 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 14 www.emmicroelectronic.com 
 

    LookupSineTab: 
       SELECT CASE X 
    CASE 0: Y = 0 
    CASE 1: Y = 3 
    CASE 2: Y = 5 
    CASE 3: Y = 7 
    CASE 4: Y = 10 
    CASE 5: Y = 11 
    CASE 6: Y = 13 
    CASE 7: Y = 14 
    CASE 8: Y = 15  
    CASE 9: Y = 15 
    CASE ELSE: 'do nothing  
   END SELECT 
 
EM66xx Assembler Language 
The table index is passed to the program in the accumulator and is stored in a temporary register Temp. The program 
returns with the lookup value in the accumulator. 
 
    LookupSineTab: 
      ;SELECT CASE X 
     STA Temp 
    ;CASE 0: Y = 0 
      JPNZ Case1  ; test for equality 
      LDI 0  ; if equal then load lookup value 
      JMP EndSelect ; exit 
    ;CASE 1: Y = 3 
    Case1:   DEC Temp  ;next index value 
      STA Temp 
      JPNZ Case2  ; test for equality 
      LDI 3  ; if equal then load lookup value 
      JMP EndSelect ; exit 
    ;CASE 2: Y = 5 
    Case2:   DEC Temp  ; ... and so on ... 
      STA Temp 
      JPNZ Case3 
      LDI 5 
      JMP EndSelect 
    ;CASE 3: Y = 7 
    Case3:   DEC Temp 
      STA Temp 
      JPNZ Case4 
      LDI 7 
      JMP EndSelect 
    ;CASE 4: Y = 10 
    Case4:   DEC Temp 
      STA Temp 
      JPNZ Case5 
      LDI 10 
      JMP EndSelect 
    ;CASE 5: Y = 11 
    Case5:   DEC Temp 
      STA Temp 
      JPNZ Case6 
      LDI 11 
      JMP EndSelect 
    ;CASE 6: Y = 13 
    Case6:   DEC Temp 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 15 www.emmicroelectronic.com 
 

      STA Temp 
      JPNZ Case7 
      LDI 13 
      JMP EndSelect 
    ;CASE 7: Y = 14 
    Case7:   DEC Temp 
      STA Temp 
      JPNZ Case8 
      LDI 14 
      JMP EndSelect 
    ;CASE 8: Y = 15 
    Case8:   DEC Temp 
      STA Temp 
      SUB Temp 
      JPNZ Case9 
      LDI 15 
      JMP EndSelect 
    ;CASE 9: Y = 15 
    Case9:   DEC Temp 
      STA Temp 
      JPNZ CaseElse 
      LDI 15 
      JMP EndSelect 
    ;CASE ELSE: 'do nothing  
    CaseElse: 
   ;END SELECT 
    EndSelect: 
 
Of course, in its compiled version, this program does not look very elegant any more. And it uses quite a number of 
instructions, which means that it consumes ROM space. But always bear in mind, that this is exactly the idea behind any 
RISC architecture: To use an inexpensive CPU with low cost memory in an optimised combination that is more software 
oriented than another based solutions. 
 
It should be noted that the HLL algorithm used in this example still has some room for improvement. For example it has not 
been optimised with regard to speed. It works in a linear fashion which means, that for a table with n entries and an equal 
probability for each of the n possible index values to occur, an average of n/2 steps is required to lookup a value. However,  
values for smaller indices will be looked up faster than for larger ones. 
 
 
2)  Binary Lookup Algorithm 
 
If a binary decision algorithm is used instead of the linear algorithm demonstrated.  
The number of steps will be the same for each value of the table index. 
 
HLL Algorithm 
 
  BinLookupSineTab: 
   CONST Y0 = 0 
   CONST Y1 = 3 
   CONST Y2 = 5 
   CONST Y3 = 7 
   CONST Y4 = 10 
   CONST Y5 = 11 
   CONST Y6 = 13 
   CONST Y7 = 14 
   CONST Y8 = 15  
   CONST Y9 = 15 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 16 www.emmicroelectronic.com 
 

   C = ShiftLeft(X)   'Bit 3 
   IF C = 0 THEN   '0 <= X < 8 
    C = ShiftLeft(X)    'Bit 2 
    IF C = 0 THEN   '0 <= X < 4 
     C = ShiftLeft(X)   'Bit 1 
     IF C = 0 THEN '0 <= X < 2 
      C = ShiftLeft(X)   'Bit 0 
      IF C = 0 THEN Y = Y0 ELSE Y = Y1 
     ELSE    '2 <= X < 4 
      C = ShiftLeft(X)   'Bit 0 
      IF C = 0 THEN Y = Y2 ELSE Y = Y3 
     ENDIF   
    ELSE    '4 <= X < 8 
     C = ShiftLeft(X)   'Bit 1 
     IF C = 0 THEN  '4 <= X < 6 
      C = ShiftLeft(X)   'Bit 0 
      IF C = 0 THEN Y = Y6 ELSE Y = Y5 
     ELSE    '6 <= X < 8 
      C = ShiftLeft(X)   'Bit 0 
      IF C = 0 THEN Y = Y8 ELSE Y = Y7 
     ENDIF   
    ENDIF  
   ELSE    '8 <= X < 16 
    C = ShiftLeft(X)    'Bit 2 
    IF C = 0 THEN   '8 <= X < 12 
     C = ShiftLeft(X)   'Bit 1 
     IF C = 0 THEN '8 <= X < 10 
      C = ShiftLeft(X)   'Bit 0 
      IF C = 0 THEN Y = Y8 ELSE Y = Y9 

ELSE   '10 <= X < 12  ') 
      C = ShiftLeft(X)   'Bit 0  ') not needed here 
      IF C = 0 THEN Y = Y10 ELSE Y = Y11   ') 
     ENDIF   
    ELSE    '12 <= X < 16 ') 
     C = ShiftLeft(X)   'Bit 1  ') 
     IF C = 0 THEN  '12 <= X < 14   ') 
      C = ShiftLeft(X)   'Bit 0  ') 
      IF C = 0 THEN Y = Y12 ELSE Y = Y13  ') not needed here 
     ELSE    '14 <= X < 16 ') 
      C = ShiftLeft(X)   'Bit 0  ') 
      IF C = 0 THEN Y = Y14 ELSE Y = Y15  ') 
     ENDIF       ') 
    ENDIF  
   ENDIF  
 
Note that in this example n = 10. This would also include index values larger than 10 up to 15. Therefore portions of the 
program handling these values may be omitted. In this special example the speed advantage over the linear version is not 
yet very significant. However, already for slightly larger tables the benefits will be notable. 
 
The major disadvantage of the binary lookup algorithm is, that it is not easy to program, even if high level tools (macro 
processor or HLL compiler) were available. Also, as the HLL version of this algorithm looks much more complicated than 
the linear one, it might be expected that the assembler version would also be very large. However, the size of the compiled 
program does not differ too much from that of the linear algorithm. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 17 www.emmicroelectronic.com 
 

 
EM66xx Assembler Language 
 
The table index is passed to the program in the accumulator and is stored in a temporary register Temp. The program 
returns with the lookup value in the accumulator. 
 
 BinLookupSineTab: 
     Y0    EQU  0 
     Y1    EQU  3 
     Y2    EQU  5 
     Y3    EQU  7 
     Y4    EQU  10 
     Y5    EQU  11 
     Y6    EQU  13 
     Y7    EQU  14 
     Y8    EQU  15  
     Y9    EQU  15 
 
    STA Temp 
       SHL Temp ;C = ShiftLeft(X)  'Bit        
  STA Temp 
       JPC Else8 ;IF C = 0 THEN  '0 <= X < 8 
    SHL Temp ; C = ShiftLeft(X)   'Bit 2 
    STA Temp 
       JPC Else4 ; IF C = 0 THEN  '0 <= X < 4 
       SHL Temp ;  C = ShiftLeft(X)    'Bit 1 
    STA Temp 
       JPC Else2 ;  IF C = 0 THEN  '0 <= X < 2 
       SHL Temp ;   C = ShiftLeft(X)   'Bit 0 
    STA Temp 
       JPC Else1 ;   IF C = 0 THEN Y = Y0 ELSE Y = Y1 
      LDI Y0 
    JMP Exit 
    Else1:  LDI Y1 
    JMP Exit ;   EXIT 
    Else2:    ;  ELSE   '2 <= X < 4 
       SHL Temp ;   C = ShiftLeft(X)    'Bit 0 
    STA Temp 
       JPC Else3 ;   IF C = 0 THEN Y = Y2 ELSE Y = Y3 
      LDI Y2 
    JMP Exit 
    Else3: LDI Y3 
    JMP Exit ;   EXIT 
        ;  ENDIF 
    Else4:    ; ELSE   '4 <= X < 8 
       SHL Temp ;  C = ShiftLeft(X)    'Bit 1 
    STA Temp 
       JPC Else6 ;  IF C = 0 THEN   '4 <= X < 6 
       SHL Temp ;   C = ShiftLeft(X)   'Bit 0 
    STA Temp 
       JPC Else5 ;   IF C = 0 THEN Y = Y4 ELSE Y = Y5 
      LDI Y4 
    JMP Exit 
    Else5: LDI Y5 
    JMP Exit ;   EXIT 
    Else6:    ;  ELSE   '6 <= X < 8 
       SHL Temp ;   C = ShiftLeft(X)   'Bit 0 
    STA Temp 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 18 www.emmicroelectronic.com 
 

       JPC Else7 ;   IF C = 0 THEN Y = Y6 ELSE Y = Y7 
      LDI Y6 
    JMP Exit 
    Else7: LDI Y7 
    JMP Exit ;   EXIT 
        ;  ENDIF 
        ; ENDIF 
    Else8:    ;ELSE    '8 <= X < 16 
       SHL Temp ; C = ShiftLeft(X)   'Bit 2 
    STA Temp 
       JPC Exit ; IF C = 0 THEN  '8 <= X < 12 
    SHL Temp ;  C = ShiftLeft(X)    'Bit 1 
    STA Temp 
       JPC Exit ;  IF C = 0 THEN  '8 <= X < 10 
       SHL Temp ;   C = ShiftLeft(X)   'Bit 0 
    STA Temp 
       JPC Else9 ;   IF C = 0 THEN Y = Y8 ELSE Y = Y9 
      LDI Y8 
    JMP Exit 
    Else9: LDI Y9 
      ;   EXIT 
        ;  ENDIF 
        ; ENDIF 
        ;ENDIF 
    Exit: 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 19 www.emmicroelectronic.com 
 

Application Note  7 

9. How to implement N-way branching 
 
 
Some application programs need special control structures which are commonly referred to as N-way branching and 
indirect branching. 
 
In high level languages (HLL) N-way branching may take the form 
 
  ON X GOTO Label1, Label2, Label3, Label4 'etc. 
 
where X is an index variable with values in the range between 1 and 4 for this example. The program 
jumps to one of the target labels Label1 through Label4 depending on the value of X. In assembler language N-way 
branching is often implemented by using indexed jump tables in memory, from which the target address is looked up and 
transferred to the program counter. Special jump instructions providing indexed indirect branching may be available for this 
purpose. 
 
Indirect branching is a form of branching where the target address of a jump instruction is not passed to the instruction 
directly as an argument, but is assigned to a RAM or register variable, whose address becomes the argument of the indirect 
jump instruction. In a HLL representation indirect branching would take the form 
 
   Vector = Label1 
   JumpIndirect (Vector) 
   '... 
   Vector = Label2 
   JumpIndirect (Vector) 
   '... 
  Label1: 
   '... 
  Label2: 
   '... 
 
Some microprocessors provide special instructions to accomplish this. Usually these instructions require at least two 
instruction cycles: one cycle to fetch the instruction itself from ROM, and the second cycle to transfer the RAM data to the 
program counter. More cycles and more instruction words are required for complex instructions with table index operands. 
Such complex instructions are typical for an another processors. 
 
As a RISC processor, the 4 bits uC follows a different approach by deliberately restricting the instruction set for the benefits 
of reduced chip area and speed, and emulating complex instructions in software. 
The 4 bits uC has separate memories for instructions (ROM) and data (RAM). Each of these memories has its own address 
space, which may be accessed by two subsets of the instruction set, one for each address space. The instructions 
referencing ROM addresses typically change the flow of control in a program, such as JMP, CALL, RET instructions etc. 
The instructions referencing RAM addresses are typically data transfer and data manipulation instructions. This architecture 
has some similarity with some HLL programming languages where data and program code are separated, i.e. a program 
cannot modify itself in memory. 
 
Therefore, in order to implement N-way branching and Indirect branching with the 4 bits uC, one has to use a HLL model. 
 
For better understanding of each of the following examples we will first describe each algorithm in terms of a high-level 
pseudo language (HLL). Then we will show its compiled version in 4 bits uC assembler language. 
 
 
A.  N-way branching   
 
HLL Algorithm 
The following HLL algorithm provides N-way branching  by using a decision structure (SELECT CASE structure) which is 
common to many HLL languages. This is a simple linear lookup algorithm which is easy to program. Its functionality is 
equivalent to that of a table lookup. This program example jumps to one of  4 target locations which is a function of an index X. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 20 www.emmicroelectronic.com 
 

    OnGoto: 
   SELECT CASE X 
    CASE 1: GOTO Label1 
    CASE 2: GOTO Label2 
    CASE 3: GOTO Label3 
    CASE 4: GOTO Label4 
   END SELECT 
   '... 
  Label1: 
   '... 
  Label2: 
   '... 
  Label3: 
   '... 
  Label4: 
   '...   
 
 
EM66xx Assembler Language 
The HLL model may compiled into 4 bits uC assembler language as shown below. The index is passed to the program in 
the accumulator and is stored in a temporary register Temp. The program jumps to the label associated with the current 
index. 
 
    OnGoto: 
      ;SELECT CASE X 
     STA Temp 
    ;CASE 1: GOTO Label1 
    Case1:   DEC Temp  ;first index value 
      STA Temp 
      JPZ Label1 ;branch if equal 
    ;CASE 2: GOTO Label2 
    Case2:   DEC Temp  ;next index value 
      STA Temp 
      JPZ Label2 ;branch if equal 
    ;CASE 3: GOTO Label3 
    Case3:   DEC Temp  ; ... and so on ... 
      STA Temp 
      JPZ Label3 
    ;CASE 4: GOTO Label4 
  Case4:   DEC Temp 
      STA Temp 
      JPZ Label4 
   ;END SELECT 
    EndSelect: 
   ;... 
  Label1: 
   ;... 
  Label2: 
   ;... 
  Label3: 
   ;... 
  Label4: 
   ;...   
 
Even in its compiled version, this program is still very simple. Of course it uses more instructions than a jump table would 
need, which means that it consumes ROM space. But always bear in mind, that this is exactly the idea behind any RISC 
architecture: To use an inexpensive CPU with low cost memory in an optimised combination that is more software oriented 
than another based solutions. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 21 www.emmicroelectronic.com 
 

 
It should be noted that the HLL algorithm used in this example still has some room for improvement. For example it has not 
been optimised with regard to speed. It works in a linear fashion which means, that for n branches and an equal probability 
for each of the n possible index values to occur, an average of n/2 decisions is required to branch to a label. However,  for 
smaller indices the branch will be faster than for larger ones. 
 
If a binary decision algorithm is used instead of the linear algorithm demonstrated above, the number of decisions until a 
branch is taken -  the binary logarithm of n rounded to the next higher integer -  and the number of decisions will be the 
same for each value of the index. For more details on binary decision algorithms please see AppNote # 6: Creating Data 
Tables in ROM. 
 
 
 
B.  Indirect branching  
 
As the EM66xx does not provide any instructions that can modify the PC register directly,  it might appear that indirect 
branching would not be not possible. However, with the right software architecture, which borrows again from a HLL model, 
a form of indirect branching may be implemented which is safer than an another assembler model and has considerable 
advantages with regard to software quality and maintainability. 
 
HLL Algorithm 
While the classical model for indirect addressing uses an address vector variable to which an actual address is assigned, 
the model shown below uses an address index variable to which an address index (also called a handle) is assigned, which 
only identifies the actual address. This handle is used by a dispatcher code section, which uses the N-way branching 
algorithm explained before, to jump to the address associated with the current value of the handle. 
 
   Handle = 1 
   GOTO Dispatch 
   '... 
   Handle = 2 
   GOTO Dispatch 
   '... 
 
    Dispatch: 
   SELECT CASE Handle  
    CASE 1: GOTO Label1 
    CASE 2: GOTO Label2 
   END SELECT 
   '... 
  Label1: 
   '... 
  Label2: 
   '... 
 
This model has the advantage that all jump addresses are located in one relatively small section of the program: the 
dispatcher. This makes it much easier to debug or modify a program and to ensure that only valid addresses are used. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 22 www.emmicroelectronic.com 
 

 
4 bits uC Assembler Language 
As can be seen, the compiled version of this algorithm is also very simple. The handle is passed to the dispatcher in the 
accumulator and is stored in a temporary variable Temp. 
 
   ;Handle = 1 
    LDI 1 
   ;GOTO Dispatch 
    JMP Dispatch 
   ;... 
   ;Handle = 2 
    LDI 2 
   ;GOTO Dispatch 
    JMP Dispatch 
   ;... 
 
    Dispatch: 
      ;SELECT CASE Handle 
     STA Temp 
    ;CASE 1: GOTO Label1 
    Case1:   DEC Temp  ;first index value 
      STA Temp 
      JPZ Label1 ;branch if equal 
    ;CASE 2: GOTO Label2 
  Case2:   DEC Temp  ;next index value 
      STA Temp 
      JPZ Label2 ;branch if equal 
   ;END SELECT 
    EndSelect: 
 
  ;... 
  Label1: 
  ;... 
  Label2: 
  ;... 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 23 www.emmicroelectronic.com 
 

Application Note 8 
10. Immediate ALU instructions 
 
 
The 4 bits uC provides the following Immediate ALU instructions. 
 
 STI    Reg, Dat  ;R(Reg) = Dat 
 STIX   Dat       ;R(Idx) = Dat 
 LDI    Dat       ;A = Dat: SetZ 
 
These instructions are called Immediate because they contain an operand  Dat  that represents a constant 4-bit value 
which is stored in ROM together with the instruction word and will be transferred immediately to the destination register 
specified by the instruction when the instruction is executed. 
The comment to the right side of the instruction overview shown above contains a short formal definition of what the 
instruction actually does in terms of the registers and flags being affected. 
 
Each instruction of the 4 bits uC microcontroller is stored in ROM as a fixed length 16-bit data word containing the operator 
and the operands defined for that instruction. 
 
An individual explanation of the various Immediate instructions is given in the following sections. The instruction format 
definitions use the bit order defined below ( Bit15 down to Bit0): 
 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
|15 |14 |13 |12 |11 |10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
 
 
A.  Store Data Immediate in Register 
 
Mnemonics  STI    Reg, Dat 
Formal description R(Reg) = Dat 
 
Binary Code 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
| 1 | 1 | 0 | 0 |d3 |d2 |d1 |d0 | 0 |r6 |r5 |r4 |r3 |r2 |r1 |r0 | 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
 
d3..d0  data bits of operand Dat, representing a constant value between 0 and 15 
r6..r0  data bits of operand Reg, representing a register address (RAM) between 0 and 127 
 
Explanation The STI instruction stores the value specified by its second operand Dat in the register whose address is 

specified by the first operand Reg. The symbols  Reg and  Dat are only placeholders in this definition. 
They may be replaced by any numeric value or any previously defined symbol or expression that the 
 assembler language permits and which evaluates to a value within the valid range specified for each 
operand. 

 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 24 www.emmicroelectronic.com 
 

B.  Store Data Immediate in Register pointed to by Index Register 
 
Mnemonics  STIX   Dat 
Formal description R(Idx) = Dat 
 
Binary Code 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
| 1 | 1 | 0 | 0 |d3 |d2 |d1 |d0 | 1 | x | x | x | x | x | x | x | 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
 
d3..d0   data bits of operand Dat, representing a constant value between 0 and 15 
x   undefined bits, ignored by the microcontroller 
 
Explanation The STIX instruction stores the value specified by its operand  Dat in the register whose 

address is currently stored in the index register of the microcontroller. The index register is a 7-bit 
register which is the combination of a 4-bit register  XL and a 3-bit register  XH which may be 
accessed at register addresses  06EH  and  06FH  respectively. The symbol  Dat is only a 
placeholder in this definition. It may be replaced by any numeric value or any previously defined 
symbol or expression that the assembler language permits and which evaluates to a value within 
the valid range specified for the operand. 

 
 
 
C.  Store Data Immediate in Accumulator 
 
Mnemonics  LDI    Dat 
Formal description A = Dat: SetZ 
 
Binary Code 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | x | x | x | x |d3 |d2 |d1 |d0 | 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
 
d3..d0  data bits of operand Dat, representing a constant value between 0 and 15 
x   undefined bits, ignored by the microcontroller 
 
Explanation The LDI instruction stores the value specified by its operand Dat in the accumulator of 

the microcontroller. The symbol  Dat is only a placeholder in this definition. It may be 
replaced by any numeric value or any previously defined symbol or expression that the 
assembler language permits and which evaluates to a value within the valid range 
specified for the operand. This instruction sets the Zero flag  Z  of the microcontroller if  
Dat = 0  and clears it if  Dat <> 0. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 25 www.emmicroelectronic.com 
 

Application Note 9 

11. How to increment the accumulator 
 
 
Increment and Decrement Instructions 
 
The 4 bits microcontroller provides a number of instructions which load a register value into the accumulator and then 
increment or decrement the accumulator.  The following is a complete list of these instructions, including the instruction 
mnemonics and a formal description of the operations performed by the instructions in terms of the registers and flags being 
affected. Further details of the formal description are given in the 4 bits uC Programming Model documentation. 
 
 INC    Reg     ;A = R(Reg) + 1: AddC: SetZ 
 DEC    Reg     ;A = R(Reg) - 1: SubC: SetZ 
 INCX          ;A = R(Idx) + 1: AddC: SetZ 
 DECX          ;A = R(Idx) - 1: SubC: SetZ 
 INCS   Reg   ;INC  Reg: SHRA 
 DECS   Reg    ;DEC  Reg: SHRA 
 INCXS        ;INCX  : SHRA 
 DECXS       ;DECX  : SHRA 
 
As can be seen, there is no instruction that increments the accumulator without loading data from a register into the 
accumulator. Therefore, if one wants to increment a value that is already in the accumulator, one has to write a small piece 
of code that does the job. The following two code examples emulate Increment Accumulator and Decrement Accumulator 
instructions. 
 
INCA   - Increment Accumulator  
 
The  INCA  function can be programmed with just two instructions and by using a temporary register Temp: 
 
 INCA:  STA Temp ;R(Temp) = A 
   INC Temp ;A = R(Temp) + 1 
 
With the first instruction the value in the accumulator is stored in Temp , which then is loaded back into  the accumulator and 
incremented with the second instruction. 
 
DECA  - Decrement Accumulator 
 
The  DECA  function can be programmed with just two instructions and by using a temporary register Temp: 
 
 DECA:  STA Temp ;R(Temp) = A 
   DEC Temp ;A = R(Temp) - 1 
 
With the first instruction the value in the accumulator is stored in Temp , which then is loaded back into  the accumulator and 
decrement with the second instruction. 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 26 www.emmicroelectronic.com 
 

Application Note 11 

12. Recursive Calculation with Lookup Tables 
 
HLL Algorithm 
Before we discuss how Recursive Calculation Using a Lookup Table may be coded in 4 bits uC assembler language, we will 
describe the function formally by the following high level language (HLL) algorithm, which gives a better understanding of 
what is needed: 
 

 CONST IterationCount = 4   'definition of parameters 
 DIM I, Par, Result, InitialValue   'variables 
 CONST TableSize = 10 
 DIM Table(1 TO TableSize )   'definition of lookup table 
 CreateTable Table()    'assign values to Table() 
  
 'main program is placed here and uses Recursion subroutine 
 
 END 
 
Recursion: 
 Par = InitialValue    'set initial value of Par  
 FOR I = 1 TO IterationCount  'iteration loop  
  A = Table(Par)    'lookup value from table 
  Par = Calculation(A)   'perform some calculation 
 NEXT 
 Result = Par     'set result to Par 
 RETURN 

 
EM66xx Implementation for 4-bit integers 
The challenge of this algorithm with respect to the 4 bits uC is how to implement the table lookup function. The 4 bits uC 
cannot read data from ROM directly. However, as shown in Application Note #6 (Creating Data Tables in ROM), by using 
the immediate instructions of the 4 bits uC, small data tables can be initialised in RAM, while lookup from larger data tables 
can be emulated by a  SELECT CASE  construct. The algorithm shown above translates into the following EM66xx 
assembler program, which represents the simplified case where all variables hold 4-bit integers: 
 

 ;CONST IterationCount = 4  'definition of parameters 
IterationCount  EQU 4 
 
 ;DIM I, Par, Result, InitialValue 
I   EQU 1 
Par   EQU 2 
Result  EQU 3 
InitialValue  EQU 4 
 
 ;CONST TableSize = 10 
 ;DIM Table(1 TO TableSize ) 'definition of lookup table 
 ;CreateTable Table() 
Table   EQU 16 
TableL   EQU 16 
TableH   EQU 0 
 
CreateTable: 
 STI Table, 0 
 STI Table + 1, 3 
 STI Table + 2, 5 
 STI Table + 3, 7 
 STI Table + 4, 10 
 STI Table + 5, 11 
 STI Table + 6, 13 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 27 www.emmicroelectronic.com 
 

 STI Table + 7, 14 
 STI Table + 8, 15 
 STI Table + 9, 15 
  
 ;main program is placed here and uses Recursion subroutine 
 ;NOTE that only two subroutine levels are available and that interrupts  
 ;have to be disabled when the second level is used !!!  
 
 ;END 
END_:  
 JMP END_ 
 
Recursion: 
 ;Par = InitialValue   'set initial value of Par 
  LDR InitialValue 
  STA Par 
 
 ;FOR I = 1 TO IterationCount 'iteration loop  
  STI IterationCount, I 
FOR: 
 ; A = Table(Par)   'lookup value from table 
   LDR Par 
   CALL Lookup 
 ; Par = Calculation(A)  'perform some calculation 
   CALL Calculation 
   STA Par 
 ;NEXT 
  DEC I 
  JPNZ FOR 
 
 ;Result = Par    'set result to Par 
  LDR Par 
  STA Result 
 
 ;RETURN 
  RET 
 
Calculation: 
 ;dummy 
 RET 
 
Lookup: 
 STA  XL    ;save table index 
 STI XH, TableH    ;set high nibble of index register 
      ;to high nibble of table base address 
 LDI TableL      ;get low nibble of table base address 
 ADD XL    ;add table index  
 STA XL    ;save result in index register  
 JPNC Lookup2 
 INC XH    ;if Carry then increment high nibble 
 STA XH    ;save result in index register 
Lookup2: 
 LDRX     ;get value from table 
 RET 

 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 28 www.emmicroelectronic.com 
 

4 bits uC Implementation for 8-bit integers 
The 4 bits uC is a 4-bit processor (as far as its data word length is concerned). Thus any data operations requiring larger 
data word lengths must use multiple 4-bit words. The following assembler program extends the algorithm given above for 8-
bit data. As the lookup table will be much larger than in the previous case, a different lookup algorithm based on a  SELECT 
CASE  construct is used. For details of that algorithm refer to Application Note #6 (Creating Data Tables in ROM). 
 

;CONST IterationCount = 4 'definition of parameters 
IterationCount  EQU 4 
 
 ;DIM I, Par, Result, InitialValue 
I   EQU 1 
ParL  EQU 2 
ParH  EQU 3 
ResultL  EQU 4 
ResultH  EQU 5 
InitialValueL  EQU 6 
InitialValueH  EQU 7 
TempL  EQU 8 
TempH  EQU 9 
  
 ;main program is placed here and uses Recursion subroutine 
 ;NOTE that only two subroutine levels are available and that interrupts  
 ;have to be disabled when the second level is used !!!  
 
 ;END 
END_:  
 JMP END_ 
 
Recursion: 
 ;Par = InitialValue   'set initial value of Par 
  LDR InitialValueL 
  STA ParL 
  LDR InitialValueH 
  STA ParH 
 
 ;FOR I = 1 TO IterationCount 'iteration loop  
  STI IterationCount, I 
FOR: 
 ; Temp = Table(Par)   'lookup value from table 
   CALL Lookup 
 ; Par = Calculation(Temp)  'perform some calculation 
   CALL Calculation 
   STA Par 
 ;NEXT 
  DEC I 
  JPNZ FOR 
 ;Result = Par    'set result to Par 
  LDR ParL 
  STA ResultL 
  LDR ParH 
  STA ResultH 
 
 ;RETURN 
  RET 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 29 www.emmicroelectronic.com 
 

Calculation: 
 ;dummy 
 LDR TempL 
 STA ParL 
 LDR TempH 
 STA ParH 
 RET 
 
Lookup: 
 ;the algorithm required here has the following structure: 
 ; SELECT CASE ParH 
 ;  CASE X1H 
 ;   SELECT CASE ParL 
 ;    CASE X11L 
 ; TempL = Y11L 
 ; TempH = Y11H 
 ;    CASE X12L 
 ; '... 
 ;   END SELECT 
 ;  CASE X2H 
 ;   SELECT CASE ParL 
 ;    CASE X21L 
 ; TempL = Y21L 
 ; TempH = Y21H 
 ;    CASE X22L 
 ; '... 
 ;   END SELECT 
 ;   '... 
 ; END SELECT 
 
 ;see Application Note #6 for details 
 ;The following code is just a test dummy: 
 LDR ParH 
 STA TempH 
 LDR ParL 
 STA TempL 
 
 RET 

 
 
Conclusions 
As can be seen from the previous example, the emulation of 8-bit table lookup may require a substantial amount of code. It 
should be noted that table lookup - while being a familiar and convenient solution in certain environments and applications - 
is not the only solution for a given problem. 
 
Depending on the specific application, it might be possible for example, to use Polynomic Functions instead of Recursive 
Calculation with Lookup Tables. Polynoms need far less constants than lookup tables and the code size is directly 
proportional to the number of coefficients. Polynoms may be used to approximate contiguous functions sufficiently well. If 
step or pulse functions are needed, the code may be even reduced two very few instructions. If non-contiguous functions 
are involved, they may be approximated piece wise by contiguous functions. 
 
In any case a careful analysis has to be made to find out which approach is most suited for a given application. There is no 
general solution and the most efficient results are likely to be obtained when the actual requirements of the application are 
well understood. 
 
References:  AppNote #6,  Creating Data Tables in ROM 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 30 www.emmicroelectronic.com 
 

Application Note 13 

13. 16 bit binary division with 4 bit controller 
 
 
The following document describes the implementation of the restoring division algorithm for a 16 bit integer division using a 
4 bits processor. The result is a 16 bit integer and a 16 bit remainder. The process has been implemented as a subroutine. 
The program hasn’t tests for check the division by 0. 
 
The structure of the 16 bit operands and result is the following:  bit15           bit0  
        +----+----+----+----+ 
        ¦0000¦0000¦0000¦0000¦  
        +----+----+----+----+ 
        OpX_3           OpX_0 
 
The operation performed is :  Operand1 / Operand2 = Result ( Remainder ) 
 
Variables :    Op1_X    / Op2_X    = ResX   ( RstX ) 
 
 
;---------------------------------------------------------------------------------------------------------- 
; MODULE : DIVIS16.ASM 
; Date last mod : 04/12/1998  Ch. Mayer 
; Module for division (If the result is too big of FFFFH, it's fault) 
;---------------------------------------------------------------------------------------------------------- 
; 
; Variables: 
; 
; OP1_1 : First number (LSB) 
; OP1_2 : First number 
; OP1_3 : First number 
; OP1_4 : First number (MSB) 
; OP2_1 : Second number (LSB) 
; OP2_2 : Second number 
; OP2_3 : Second number 
; OP2_4 : Second number (MSB)  
; Res1 : Resultat (LSB) 
; Res2 : Resultat  
; Res3 : Resultat  
; Res4 : Resultat (MSB) 
; Rst1 : Rest (LSB) 
; Rst2 : Rest 
; Rst3 : Rest 
; Rst4 : Rest (MSB) 
; ComptL : Counter of calcul low 
; ComptH : Counter of calcul high 
; Carry : Save the carry, first memory 
; Carry2 : Save the carry, second memory 
; Stack1 : \ 
; Stack2 :    => Save temporaly the calcul’s value 
; Stack3 :   / 
; Stack4 : / 
; 
;--------------------------------------------------------------------------------------------- 
Divi16:  
 STI ComptL, 00H ; 16 clocks at calcul 
 STI ComptH, 01H 
 LDR OP1_1  ; Load the first value in the result for the calcul 
 STA Res1 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 31 www.emmicroelectronic.com 
 

 LDR OP1_2 
 STA Res2 
 LDR OP1_3 
 STA Res3 
 LDR OP1_4 
 STA Res4 
 STI Rst1, 00H 
 STI Rst2, 00H 
 STI Rst3, 00H 
 STI Rst4, 00H 
  
Div100: LDR OP2_4  ; Substract the fourth value at the rest (MSB) 
 SUB Rst4 
 STA Stack4 
 JPC Div110  ; If the carry is 0, the result is negative, don't jump 
 DEC Carry2  ; If the result is negative, decrement the previous carry 
 JPNC Div180  ; If is always negative, jump to "Div180" 
 STA Carry2  ; Else memories 
 
Div110: LDR OP2_3  ; Substract the third value at the rest 
 SUB Rst3   
 STA Stack3   
 JPC Div120  ; If the carry is 0, the result is negative 
 DEC Stack4  ; If the result is negative, decrement the "MSB" bit 
 STA Stack4   
 JPC Div120  ; If is always negative, don't jump 
 DEC Carry2  ; If the result is negative, decrement the previous carry 
 JPNC Div180  ; If is always negative, jump to "Div180" 
 STA Carry2  ; Else memories 
 
Div120: LDR OP2_2  ; Substract the second value at the rest 
 SUB Rst2   
 STA Stack2   
 JPC Div130  ; If the carry is 0, the result is negative 
 DEC Stack3  ; If the result is negative, decrement the previous bit 
 STA Stack3   
 JPC Div130  ; If is always negative, don't jump 
 DEC Stack4  ; If the result is negative, decrement the previous bit 
 STA Stack4 
 JPC Div130 
 DEC Carry2  ; If the result is negative, decrement the previous carry 
 JPNC Div180  ; If is always negative, jump to "Div180" 
 STA Carry2  ; Else memories 
 
Div130: LDR OP2_1  ; Substract the first value at the rest (LSB) 
 SUB Rst1   
 STA Stack1   
 JPC Div150  ; If the carry is 0, the result is negative 
 DEC Stack2  ; If the result is negative, decrement the previous bit 
 STA Stack2   
 JPC Div150  ; If is always negative, don't jump 
 DEC Stack3  ; If the result is negative, decrement the previous bit 
 STA Stack3   
 JPC Div150  ; If is always negative, don't jump 
 DEC Stack4  ; If the result is negative, decrement the previous bit 
 STA Stack4   
 JPC Div150  ; If is always negative, don't jump 
 DEC Carry2  ; If the result is negative, decremente the previous carry 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 32 www.emmicroelectronic.com 
 

 JPNC Div180  ; If is always negative, jump to "Div180" 
 STA Carry2  ; Else memories 
 
Div150: LDR Stack4  ; Memories the new value after calcul 
 STA Rst4 
 LDR Stack3 
 STA Rst3 
 LDR Stack2   
 STA Rst2   
 LDR Stack1 
 STA Rst1 
 
 INC Res1  ; Add the value one if the result is positive 
 STA Res1 
 JPNC Div180 
 INC Res2 
 STA Res2 
 JPNC Div180 
 INC Res3 
 STA Res3 
 JPNC Div180 
 INC Res4 
 STA Res4 
 JPNC Div180 
 INC Rst1 
 STA Rst1 
 JPNC Div180 
 INC Rst2 
 STA Rst2 
 JPNC Div180 
 INC Rst3 
 STA Rst3 
 JPNC Div180 
 INC Rst4 
 STA Rst4 
 
Div180: DEC ComptL  ; Compt bis to 16 calcul, after it's finish 
 STA ComptL 
 JPNC Div300 
 
Div200: SHLR Res1  ; Shift left with the all bits 
 STA Res1 
 JPNC Div205 
 STI Carry, 01H 
 JMP Div210 
Div205: STI Carry, 00H 
 
Div210: SHLR Res2   
 STA Res2 
 JPNC Div215 
 STI Carry2, 01H 
 JMP Div220 
Div215: STI Carry2, 00H 
 
Div220: LDR Carry 
 ADD Res2 
 STA Res2 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 33 www.emmicroelectronic.com 
 

 SHLR Res3 
 STA Res3 
 JPNC Div225 
 STI Carry, 01H 
 JMP Div230  ; Shift left with the all bits 
Div225: STI Carry, 00H 
 
Div230: LDR Carry2 
 ADD Res3 
 STA Res3 
 
 SHLR Res4 
 STA Res4 
 JPNC Div235 
 STI Carry2, 01H 
 JMP Div240 
Div235: STI Carry2, 00H 
 
Div240: LDR Carry 
 ADD Res4 
 STA Res4 
 
 SHLR Rst1 
 STA Rst1 
 JPNC Div245 
 STI Carry, 01H 
 JMP Div250 
Div245: STI Carry, 00H 
 
Div250: LDR Carry2 
 ADD Rst1 
 STA Rst1 
 
 SHLR Rst2 
 STA Rst2 
 JPNC Div255 
 STI Carry2, 01H 
 JMP Div260 
Div255: STI Carry2, 00H 
 
Div260: LDR Carry 
 ADD Rst2 
 STA Rst2 
 
 SHLR Rst3 
 STA Rst3 
 JPNC Div265 
 STI Carry, 01H 
 JMP Div270 
Div265: STI Carry, 00H 
Div270: LDR Carry2 
 ADD Rst3 
 STA Rst3 

 
 SHLR Rst4 
 STA Rst4 
 JPNC Div275           ; Shift left with the all bits 
 STI Carry2, 01H 
 JMP Div280 
Div275: STI Carry2, 00H 
 
Div280: LDR Carry 
 ADD Rst4 
 STA Rst4 
 JMP Div100 
  
Div300: DEC ComptH 
 STA ComptH 
 JPC Div200 
 RET 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 34 www.emmicroelectronic.com 
 

 
Application Note 14 
14. 16 bit binary multiplication with 4 bit controller 
 
 
The following figure shows the implementation of an algorithm for a 16 bit multiplication using a 4 bit processor. 
The result is a 32 bit number with overflow being signalled with the carry flag. The process has been 
implemented as a subroutine. The basic principal involves successive shifts of the operands, one to the left and 
one to the right. This is followed by addition of the operand shifted to the left, in this case operand1, to the 
result if bit 0 of the least significant nibble of operand 2 is 1 (16 series of multiplication by 2 and additions). In 
this way the maximum number of loop cycles is 16 as opposed to a loop addition process where the number of 
cycles is variable. 
 
The structure of the 16 bit operands is the following:  bit15           bit0  
        +----+----+----+----+ 
        ¦0000¦0000¦0000¦0000¦ 
        +----+----+----+----+ 
        OpX_3           OpX_0 
 
 
;---------------------------------------------------------------------------------------------------------- 
; MODULE : MULTI16.ASM 
; Date last mod : 30/11/1998  Ch.Mayer 
; Module for multiplication 16 bits, result on 32 bits 
;---------------------------------------------------------------------------------------------------------- 
; 
;    VARIABLES FOR THE CALCUL: 
; 
; OP1_1 : First number (LSB) 
; OP1_2 : First number 
; OP1_3 : First number 
; OP1_4 : First number (MSB) 
; OP2_1 : Second number (LSB) 
; OP2_2 : Second number 
; OP2_3 : Second number 
; OP2_4 : Second number (MSB) 
; Res1 : Resultat (LSB) 
; Res2 : Resultat 
; Res3 : Resultat 
; Res4 : Resultat 
; Res5 : Resultat 
; Res6 : Resultat 
; Res7 : Resultat 
; Res8 : Resultat (MSB) 
; Compt : Count the position of the calcul 
; Carry : Save the carry, memory n°1 
; Carry2 : Save the carry, memory n°2 
; 
;---------------------------------------------------------------------------------------------------------- 
Multi16: 
 STI Compt, 0FH ; 16 times for the calcul 
 LDR OP2_1  ; Load the first value in the result for the calcul 
 STA Res1 
 LDR OP2_2 
 STA Res2 
 LDR OP2_3 
 STA Res3 
 LDR OP2_4 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 35 www.emmicroelectronic.com 
 

 STA Res4 
 STI Res5, 00H 
 STI Res6, 00H 
 STI Res7, 00H 
 STI Res8, 00H 
 
  
Multi100: 
 LDI 0001b  ; If the first bit is at one, add the second value 
 AND Res1 
 JPZ Multi200 
 
 LDR OP1_1  ; Add the first data 
 ADD Res5 
 STA Res5 
 JPNC Multi110  ; Test the carry for the next 4 bits 
 STI Carry, 01H 
 JMP Multi120 
Multi110: 
 STI Carry, 00H 
Multi120: 
 LDR OP1_2  ; Add the second data 
 ADD Res6 
 STA Res6 
 JPNC Multi130  ; Test carry for the next 4 bits 
 STI Carry2, 01H 
 JMP Multi140 
Multi130:  
 STI Carry2, 00H  
Multi140: 
 LDR Carry  ; Add the carry at the data 
 ADD Res6 
 STA Res6 
 JPNC Multi145 
 STI Carry2, 01H 
  
Multi145: 
 LDR OP1_3  ; Add the third data 
 ADD Res7 
 STA Res7 
 JPNC Multi150  ; Test carry for the next 4 bits 
 STI Carry, 01H 
 JMP Multi160 
Multi150: 
 STI Carry, 00H 
Multi160: 
 LDR Carry2  ; Add the carry at the data 
 ADD Res7 
 STA Res7 
 JPNC Multi165 
 STI Carry, 01H 
  
Multi165: 
 LDR OP1_4  ; Add the fourth data 
 ADD Res8 
 STA Res8 
 JPNC Multi170  ; Test carry for the next 4 bits 
 STI Carry2, 08H 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 36 www.emmicroelectronic.com 
 

 JMP Multi180 
Multi170: 
 STI Carry2, 00H 
Multi180: 
 LDR Carry  ; Add the carry at the data 
 ADD Res8 
 STA Res8  
 JPNC Multi185 
 STI Carry2, 08H 
  
Multi185: 
 JMP Multi205 
  
  
Multi200: 
 STI Carry2, 00H 
 
Multi205: 
 SHRR  Res8  ; Shift right the result value intermediare 
 STA Res8 
 JPNC Multi210  ; Test the carry for the next 4 bits 
 STI Carry, 08H 
 JMP Multi215 
Multi210: 
 STI Carry, 00H 
Multi215: 
 LDR Carry2  ; Add the carry at the result value 
 ADD Res8 
 STA Res8 
  
 SHRR Res7  ; Shift right the result value intermediare 
 STA Res7 
 JPNC Multi220  ; Test the carry for the next 4 bits 
 STI Carry2, 08H  
 JMP Multi225 
Multi220: 
 STI Carry2, 00H 
Multi225: 
 LDR Carry  ; Add the carry at the result value 
 ADD Res7 
 STA Res7 
  
 SHRR Res6  ; Shift right the result value intermediare 
 STA Res6 
 JPNC Multi230  ; Test the carry for the next 4 bits 
 STI Carry, 08H 
 JMP Multi235 
Multi230: 
 STI Carry, 00H 
Multi235: 
 LDR Carry2  ; Add the carry at the result value 
 ADD Res6 
 STA Res6 
 
 SHRR Res5  ; Shift right the result value intermediare 
 STA Res5 
 JPNC Multi240 
 STI Carry2, 08H 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 37 www.emmicroelectronic.com 
 

 JMP Multi245 
Multi240: 
 STI Carry2, 00H 
Multi245: 
 LDR Carry  ; Add the carry for the next 4 bits 
 ADD Res5 
 STA Res5 
  
 SHRR  Res4  ; Shift right the result value intermediare 
 STA Res4 
 JPNC Multi250  ; Test the carry for the next 4 bits 
 STI Carry, 08H 
 JMP Multi255 
Multi250: 
 STI Carry, 00H 
Multi255: 
 LDR Carry2  ; Add the carry at the result value 
 ADD Res4 
 STA Res4 
  
 SHRR Res3  ; Shift right the result value intermediare 
 STA Res3 
 JPNC Multi260 ; Test the carry for the next 4 bits 
 STI Carry2, 08H  
 JMP Multi265 
Multi260: 
 STI Carry2, 00H 
Multi265: 
 LDR Carry  ; Add the carry at the result value 
 ADD Res3 
 STA Res3 
  
 SHRR Res2  ; Shift right the result value intermediare 
 STA Res2 
 JPNC Multi270 ; Test the carry for the next 4 bits 
 STI Carry, 08H 
 JMP Multi275 
Multi270: 
 STI Carry, 00H 
Multi275: 
 LDR Carry2  ; Add the carry at the result value 
 ADD Res2 
 STA Res2 
  
 SHRR Res1  ; Shift right the result value intermediare 
 STA Res1 
 LDR Carry  ; Add the carry for the next 4 bits 
 ADD Res1 
 STA Res1 
  
Multi280: 
 DEC Compt  ; Decrement the compteur 
 STA Compt 
 JPC Multi100 
  
 RET 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 38 www.emmicroelectronic.com 
 

Version Interrupt source First int. 
after reset 

EM6x03 1Hz 1 clock 
 8Hz 1 clock 
 32Hz 1 clock 
EM6x04 2Hz 1 clock 
 8Hz 1 clock 
 32Hz 1 clock 
EM6x05 1Hz * 1 clock 
 8Hz * 1 clock 
 32Hz * 1 clock 
EM6x17 1Hz 1 clock 
 8Hz ½ clock 
 32Hz ½ clock 
EM6x20 1Hz 1 clock 
 8Hz ½ clock 
 32Hz ½ clock 
EM6x21 1Hz 1 clock 
 8Hz ½ clock 
 32Hz ½ clock 
EM6x22 1Hz 1 clock 
 8Hz ½ clock 
 32Hz ½ clock 
EM6x40 1 Hz * 1 clock 
 586Hz * ½ clock 

9 4kHz * ½ clock

Application Note 19 
15. How is the prescaler after reset 
 
 
 
This application note describes the prescaler after a 
reset, on each version of micro-controller. 
The normal behaviour of the prescaler doesn’t change on 
the different versions. The difference is only after a reset 
on the first IRQ clock. 
The table 1 describes the different prescaler interrupt 
after a reset for each version. 
 
The reset of the prescaler is useful when you want to 
synchronise the prescaler with an external clock for 
example. But if you use the prescaler in the program, i.e. 
for a real time clock, you don’t need to reset the prescaler 
after each interrupt.  
 
For more detailed characteristics on the prescaler, refer 
to the specifications of each individual micro-controller.  
You can download the latest version of the specifications 
and some example’s programs on our web site. 
(http://www.emmicroelectronic.com/)  
 
 
 
 
 
 
 
 
 
 
 
 
*: With the base’s frequency without divisor. 
 

http://www.emmicroelectronic.com/


 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 39 www.emmicroelectronic.com 
 

Module

Reset the
variables

OP1_1 <
0AH

OP1_2 =
00H

Yes

OP1_1 = OP1_1 - 0AH

No

Res1 = OP1_1

Yes

OP1_2 = OP1_2 -1

No

OP1_1 = OP1_1 - 0AH

Res2 = Res2 + 1

Res > 0AH
No

Res2 = Res2 - 0AH

Yes

Res3 = Res3 + 1

RET

Input: - OP1_1 : Number Hex (LSB)
- OP1_2 : Number Hex(MSB)

Output: - Res1 : Number Dec (LSB)
- Res2 : Number Dec
- Res3 : Number Dec (MSB)

Application Note 20 

16. How to convert Hex - Dec 
 
 
 
The 4 bits uC does not provide 
instructions to convert a value hex - dec. 
Therefore it is necessary to implement 
the converter hex - dec functions by a 
small piece of code, which could be 
written as a subroutine as shown below. 
 
This flowchart describes the module to 
convert Hex-Dec. 
 
If you include this module in your 
software, you define the five variables in 
your principal file. 
 
 
 
 
 
 
 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 40 www.emmicroelectronic.com 
 

Appendix A: Hex – Dec module 
;---------------------------------------------------------------------------------------------------------- 
; MODULE : HEXDEC.ASM 
; Date last mod : 20/02/1998  Ch.Mayer 
; Module for convert hex - dec 
;---------------------------------------------------------------------------------------------------------- 
; OP1_1 : First number (LSB) 
; OP1_2 : First number (MSB) 
; Res1 : Resultat (LSB) 
; Res2 : Resultat 
; Res3 : Resultat (MSB) 
;--------------------------------------------------------------------------------------------- 
HexDec:  
 STI Res1, 00H ; Reset the variables 
 STI Res2, 00H 
 STI Res3, 00H 
 
HexDec100: 
 LDI 0AH  ; If the LSB number isn't too big of 0AH (OP1_1 < 0AH)... 
 SUB OP1_1 
 JPNC HexDec200 
 STA OP1_1  ; ... Then save the result 
 JMP HexDec250 
 
HexDec200:   ; ... Else decrement the MSB value 
 DEC OP1_2 
 JPNC HexDec300 
 STA OP1_2 
 LDI 0AH  ; \ 
 SUB OP1_1  ;  => OP1_1 = OP1_1 - 0AH 
 STA OP1_1  ; / 
 
HexDec250: 
 INC Res2  ; Increment the decimal value 
 STA Res2 
 LDI 0AH 
 SUB Res2 
 JPNC HexDec100 
 STA Res2 
 INC Res3 
 STA Res3 
 JMP HexDec100  
  
HexDec300: 
 LDR OP1_1  ; Add the latest value at the decimal value. 
 STA Res1 
 STI OP1_1, 00H 
  
 RET 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 41 www.emmicroelectronic.com 
 

Module

Reset the
variables

OP1_3 < 2

OP1_3 = 2

Errors = 1

No

No

RET

OP1_2 < 5

Yes

OP1_2 = 5

No

No

OP1_1 < 6

Yes

No

Res1 = OP1_1

Yes

Yes

Yes

OP1_2 < 0

OP1_2 = OP1_2 -1

No

OP1_3 < 0

Yes

Yes

OP1_3 = OP1_3 - 1
OP1_2 = 9

No

Res1 = Res1 + A
If Res1 > 0FH Then Res2 = Res2 + 1

Jump1

Jump1

Input: - OP1_1 : Number Dec (LSB)
- OP1_2 : Number Dec
- OP1_3 : Number Dec (MSB)

Output: - Res1 : Number Hex (LSB)
- Res2 : Number Hex (MSB)

Application Note 21 

17. How to convert Dec - Hex 
 
 
 
The 4 bits uC does not provide instructions to 
convert a value dec - hex. Therefore it is 
necessary to implement the converter dec - hex 
functions by a small piece of code, which could be 
written as a subroutine as shown below. 
 
This flowchart describes the module to convert 
Dec - Hex. 
 
If you include this module in your software, you 
define the five variables in your principal file. 
 
 
 
 
 
 
 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 42 www.emmicroelectronic.com 
 

Appendix A: Dec – Hex module 
;---------------------------------------------------------------------------------------------------------- 
; MODULE : DECHEX.ASM 
; Date last mod : 20/02/1998  Ch.Mayer 
; Module for convert dec - hex 
;---------------------------------------------------------------------------------------------------------- 
; OP1_1 : First number (LSB) 
; OP1_2 : First number 
; OP1_3 : First number (MSB) 
; Res1 : Resultat (LSB) 
; Res2 : Resultat (MSB) 
;--------------------------------------------------------------------------------------------- 
DecHex:  

LDI 02H  ; Test if the decimal value is => 300. 
 SUB OP1_3 
 JPNC DecHex090 ; Value is < 200, then jump to "DecHex090". 
 JPZ DecHex010 ; Value is between 200 and 299, then jump to "DecHex010". 
 STI Errors, 01H ; Value too big, then error. 
 JMP DecHex400 
DecHex010: 
 LDI 05H  ; Test if the decimal value is => 260. 
 SUB OP1_2 
 JPNC DecHex090 ; Value is < 250, then jump to "DecHex090". 
 JPZ DecHex020 ; Value is between 250 and 259, then jump to "DecHex020". 
 STI Errors, 01H ; Value too big, then error. 
 JMP DecHex400 
DecHex020: 
 LDI 06H  ; Test if the decimal value is => 256. 
 SUB OP1_1 
 JPNC DecHex090 ; Value is < 256, then jump to "DecHex090" 
 STI Errors, 01H ; Value too big, then error. 
 JMP DecHex400  
DecHex090: 
 LDR OP1_1  ; Decrement the decimal value for ... 
 STA Res1 
 STI OP1_1, 00H 
 STI Res2, 00H 
DecHex100: 
 DEC OP1_2   
 JPNC DecHex200 
 STA OP1_2 
 JMP DecHex300 
DecHex200: 
 DEC OP1_3   
 JPNC DecHex400 
 STA OP1_3 
 STI OP1_2, 09H 
DecHex300: 
 LDI 0AH  ; ... increment the hexa value. 
 ADD Res1 
 STA Res1 
 JPNC DecHex100 
 INC Res2 
 STA Res2 
 JMP DecHex100   
DecHex400: 
 RET 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 43 www.emmicroelectronic.com 
 

Writing e2prom 

RAM = 0 

INC RAM 

INC RAM 

Initialization 
RAM = 0 

RAM = 0 

Figure 1. 

Application Note 22 
18. Protection of internal E2PROM 
 
 
This AppNote applies only to products EM6640, EM6540, EM6617 and EM6517. When 
working with a micro-controller incorporating an E2PROM, the memory is normally used to 
store numbers, codes and other important data. 
 
It is essential to avoid this data being altered inadvertently by extraneous activity, which 
could lead to a modification of the program and undesired consequences. 
 
A set procedure for writing data to the EEPROM is essential; external disturbances can 
cause “glitches” and can lead to inadvertent modification of the data stored in the memory 
during the write process. 
The environment of the micro-controller can affect the extent of the risk resulting from 
external disturbances (such as faulty transformers, magnetic fields etc).  
As a consequence, the procedures used to write the memory carry a potential risk of 
corrupting the E2prom data. 
 
To avoid this problem, and subject to the type of software being written, five proposals 
are set out below. 
Prior consideration should be given to the conditions under which any programming is to 
take place: for example, will this be done only by the manufacturer or also during the 
service life of the micro-controller? 
 
 

1) If the E2prom is to be programmed only by the manufacturer, a spare pad can be used. 
Set this pad to Vdd during the writing phase and to Vss to lock any writing. During the 
writing phase, the pad must be checked by software to determine whether an 
instruction given was valid or not. 

 
2) Use the SVLD to ensure that the potential at the terminals of the micro-controller is sufficient to permit 

writing. This is essential to avoid possible failure of the power supply during writing. 
 
3) Before running the write routine of the E2prom, increment a RAM address at two specific, well-defined locations in the 

software program. This will ensure that if the software performs normally, this address will contain the value “02H”. 
During the write phase, this variable should be read and then written to the register. Providing the program is not 
disturbed, the value written to the register will be correct and the programming can start. When the write process is 
complete, ensure that the variable at 00H is immediately erased. 

 
 



 

 
 
 
 

 AppNote 30
 

   

Copyright © 2005, EM Microelectronic-Marin SA 44 www.emmicroelectronic.com 
 

RAM0 

RAM3 
RAM2 
RAM1 

Checksum

EEP0 

EEP3 
EEP2 
EEP1 

Checksum 
? 
=

Figure 2. 

4) Data to be written to the E2prom should be temporarily held in the 
RAM (see fig 2); at this point, a checksum is calculated and also held 
in the RAM. This checksum is recalculated and compared with the 
first checksum immediately before writing each 4-bit word to the 
E2prom. If the two checksums correspond then there has been no 
corruption of the data by extraneous interference. When all words 
have been written, the RAM is erased and the checksum is also 
written to the E2prom. When the recorded data is read from the 
memory, the checksum is again recalculated and compared to the 
recorded checksum. If they match it signifies that there were no problems during writing. 

 

5) To guarantee a higher level of security, the procedures given in 
Proposal 4 can be enhanced as follows: once all 4-bits words have 
been written to the E2prom they can be read back and compared to 
the data in the RAM. This must be carried out before erasure of the 
RAM. This additional procedure will verify that the data memorized 
was not corrupted during the write phase by, for example, a brief 
power supply dropout. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the 
Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no 
responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at 
any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other 
intellectual property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not 
authorized for use as components in life support devices or systems. 

© EM Microelectronic-Marin SA, 06/05, Rev. C 

RAM0 

RAM3 
RAM2 
RAM1 

Checksum

EEP0 

EEP3 
EEP2 
EEP1 

Checksum

? 
=

Figure 3. 


	1. Instruction Timing 
	2. Compilation when using Macro 
	3. How to rotate left a register through carry 
	4. How to rotate right a register through carry 
	5. How to increment or decrement the index register 
	6. How to rotate left a large buffer in RAM 
	7. How ADD, SUB and shift instructions handle the carry flag 
	8. Creating Data Tables in ROM 
	9. How to implement N-way branching 
	10. Immediate ALU instructions 
	11. How to increment the accumulator 
	12. Recursive Calculation with Lookup Tables 
	13. 16 bit binary division with 4 bit controller 
	14. 16 bit binary multiplication with 4 bit controller 
	15. How is the prescaler after reset 
	16. How to convert Hex - Dec 
	17. How to convert Dec - Hex 
	18. Protection of internal E2PROM 

